Preface

Before You Begin

1 Introduction to Computers and Python

1.1 Introduction
1.2 Hardware and Software
 1.2.1 Moore’s Law
 1.2.2 Computer Organization
1.3 Data Hierarchy
1.4 Machine Languages, Assembly Languages and High-Level Languages
1.5 Introduction to Object Technology
1.6 Operating Systems
1.7 Python
1.8 It’s the Libraries!
 1.8.1 Python Standard Library
 1.8.2 Data-Science Libraries
1.9 Other Popular Programming Languages
1.10 Test-Drive: Using IPython and Jupyter Notebooks
 1.10.1 Using IPython Interactive Mode as a Calculator
 1.10.2 Executing a Python Program Using the IPython Interpreter
 1.10.3 Writing and Executing Code in a Jupyter Notebook
1.11 Internet and World Wide Web
 1.11.1 Internet: A Network of Networks
 1.11.2 World Wide Web: Making the Internet User-Friendly
 1.11.3 The Cloud
 1.11.4 Internet of Things
1.12 Software Technologies
1.13 How Big Is Big Data?
 1.13.1 Big Data Analytics
 1.13.2 Data Science and Big Data Are Making a Difference: Use Cases
1.14 Intro to Data Science: Case Study—A Big-Data Mobile Application

2 Introduction to Python Programming

2.1 Introduction
2.2 Variables and Assignment Statements
Contents

2.3 Arithmetic 52
2.4 Function print and an Intro to Single- and Double-Quoted Strings 56
2.5 Triple-Quoted Strings 58
2.6 Getting Input from the User 59
2.7 Decision Making: The if Statement and Comparison Operators 61
2.8 Objects and Dynamic Typing 66
2.9 Intro to Data Science: Basic Descriptive Statistics 68
2.10 Wrap-Up 70

3 Control Statements and Program Development 73
3.1 Introduction 74
3.2 Algorithms 74
3.3 Pseudocode 75
3.4 Control Statements 75
3.5 if Statement 78
3.6 if…else and if…elif…else Statements 80
3.7 while Statement 85
3.8 for Statement 86
 3.8.1 Iterables, Lists and Iterators 88
 3.8.2 Built-In range Function 88
3.9 Augmented Assignments 89
3.10 Program Development: Sequence-Controlled Repetition 90
 3.10.1 Requirements Statement 90
 3.10.2 Pseudocode for the Algorithm 90
 3.10.3 Coding the Algorithm in Python 91
 3.10.4 Introduction to Formatted Strings 92
3.11 Program Development: Sentinel-Controlled Repetition 93
3.12 Program Development: Nested Control Statements 97
3.13 Built-In Function range: A Deeper Look 101
3.14 Using Type decimal for Monetary Amounts 102
3.15 break and continue Statements 105
3.16 Boolean Operators and, or and not 106
3.17 Intro to Data Science: Measures of Central Tendency—Mean, Median and Mode 109
3.18 Wrap-Up 111

4 Functions 119
4.1 Introduction 120
4.2 Defining Functions 120
4.3 Functions with Multiple Parameters 123
4.4 Random-Number Generation 125
4.5 Case Study: A Game of Chance 128
4.6 Python Standard Library 131
4.7 math Module Functions 132
4.8 Using IPython Tab Completion for Discovery 133
4.9 Default Parameter Values 135
4.10 Keyword Arguments 136
4.11 Arbitrary Argument Lists 136
4.12 Methods: Functions That Belong to Objects 138
4.13 Scope Rules 138
4.14 import: A Deeper Look 140
4.15 Passing Arguments to Functions: A Deeper Look 142
4.16 Function-Call Stack 145
4.17 Functional-Style Programming 146
4.18 Intro to Data Science: Measures of Dispersion 148
4.19 Wrap-Up 150

5 Sequences: Lists and Tuples 155
5.1 Introduction 156
5.2 Lists 156
5.3 Tuples 161
5.4 Unpacking Sequences 163
5.5 Sequence Slicing 166
5.6 del Statement 169
5.7 Passing Lists to Functions 171
5.8 Sorting Lists 172
5.9 Searching Sequences 174
5.10 Other List Methods 176
5.11 Simulating Stacks with Lists 178
5.12 List Comprehensions 179
5.13 Generator Expressions 181
5.14 Filter, Map and Reduce 182
5.15 Other Sequence Processing Functions 185
5.16 Two-Dimensional Lists 187
5.17 Intro to Data Science: Simulation and Static Visualizations 191
5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls 191
5.17.2 Visualizing Die-Roll Frequencies and Percentages 193
5.18 Wrap-Up 199

6 Dictionaries and Sets 209
6.1 Introduction 210
6.2 Dictionaries 210
6.2.1 Creating a Dictionary 210
6.2.2 Iterating through a Dictionary 212
6.2.3 Basic Dictionary Operations 212
6.2.4 Dictionary Methods keys and values 214
6.2.5 Dictionary Comparisons 216
6.2.6 Example: Dictionary of Student Grades 217
6.2.7 Example: Word Counts 218
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>Splitting and Joining Strings</td>
<td>294</td>
</tr>
<tr>
<td>8.10</td>
<td>Characters and Character-Testing Methods</td>
<td>297</td>
</tr>
<tr>
<td>8.11</td>
<td>Raw Strings</td>
<td>298</td>
</tr>
<tr>
<td>8.12</td>
<td>Introduction to Regular Expressions</td>
<td>299</td>
</tr>
<tr>
<td>8.12.1</td>
<td><code>re</code> Module and Function <code>fullmatch</code></td>
<td>300</td>
</tr>
<tr>
<td>8.12.2</td>
<td>Replacing Substrings and Splitting Strings</td>
<td>303</td>
</tr>
<tr>
<td>8.12.3</td>
<td>Other Search Functions; Accessing Matches</td>
<td>304</td>
</tr>
<tr>
<td>8.13</td>
<td>Intro to Data Science: Pandas, Regular Expressions and Data Munging</td>
<td>307</td>
</tr>
<tr>
<td>8.14</td>
<td>Wrap-Up</td>
<td>312</td>
</tr>
<tr>
<td>9</td>
<td>Files and Exceptions</td>
<td>319</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>320</td>
</tr>
<tr>
<td>9.2</td>
<td>Files</td>
<td>321</td>
</tr>
<tr>
<td>9.3</td>
<td>Text-File Processing</td>
<td>321</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Writing to a Text File: Introducing the <code>with</code> Statement</td>
<td>322</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Reading Data from a Text File</td>
<td>323</td>
</tr>
<tr>
<td>9.4</td>
<td>Updating Text Files</td>
<td>325</td>
</tr>
<tr>
<td>9.5</td>
<td>Serialization with JSON</td>
<td>327</td>
</tr>
<tr>
<td>9.6</td>
<td>Focus on Security: <code>pickle</code> Serialization and Deserialization</td>
<td>330</td>
</tr>
<tr>
<td>9.7</td>
<td>Additional Notes Regarding Files</td>
<td>330</td>
</tr>
<tr>
<td>9.8</td>
<td>Handling Exceptions</td>
<td>331</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Division by Zero and Invalid Input</td>
<td>332</td>
</tr>
<tr>
<td>9.8.2</td>
<td><code>try</code> Statements</td>
<td>332</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Catching Multiple Exceptions in One <code>except</code> Clause</td>
<td>335</td>
</tr>
<tr>
<td>9.8.4</td>
<td>What Exceptions Does a Function or Method Raise?</td>
<td>336</td>
</tr>
<tr>
<td>9.8.5</td>
<td>What Code Should Be Placed in a <code>try</code> Suite?</td>
<td>336</td>
</tr>
<tr>
<td>9.9</td>
<td><code>finally</code> Clause</td>
<td>336</td>
</tr>
<tr>
<td>9.10</td>
<td>Explicitly Raising an Exception</td>
<td>339</td>
</tr>
<tr>
<td>9.11</td>
<td>(Optional) Stack Unwinding and Tracebacks</td>
<td>339</td>
</tr>
<tr>
<td>9.12</td>
<td>Intro to Data Science: Working with CSV Files</td>
<td>342</td>
</tr>
<tr>
<td>9.12.1</td>
<td>Python Standard Library Module <code>csv</code></td>
<td>342</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Reading CSV Files into Pandas <code>DataFrame</code></td>
<td>344</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Reading the Titanic Disaster Dataset</td>
<td>346</td>
</tr>
<tr>
<td>9.12.4</td>
<td>Simple Data Analysis with the Titanic Disaster Dataset</td>
<td>347</td>
</tr>
<tr>
<td>9.12.5</td>
<td>Passenger Age Histogram</td>
<td>348</td>
</tr>
<tr>
<td>9.13</td>
<td>Wrap-Up</td>
<td>349</td>
</tr>
<tr>
<td>10</td>
<td>Object-Oriented Programming</td>
<td>355</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>356</td>
</tr>
<tr>
<td>10.2</td>
<td>Custom Class <code>Account</code></td>
<td>358</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Test-Driving Class <code>Account</code></td>
<td>358</td>
</tr>
<tr>
<td>10.2.2</td>
<td><code>Account</code> Class Definition</td>
<td>360</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Composition: Object References as Members of Classes</td>
<td>361</td>
</tr>
<tr>
<td>10.3</td>
<td>Controlling Access to Attributes</td>
<td>363</td>
</tr>
</tbody>
</table>
Contents

10.4 Properties for Data Access 364
 10.4.1 Test-Driving Class Time 364
 10.4.2 Class Time Definition 366
 10.4.3 Class Time Definition Design Notes 370

10.5 Simulating “Private” Attributes 371

10.6 Case Study: Card Shuffling and Dealing Simulation 373
 10.6.1 Test-Driving Classes Card and DeckOfCards 373
 10.6.2 Class Card—Introducing Class Attributes 375
 10.6.3 Class DeckOfCards 377
 10.6.4 Displaying Card Images with Matplotlib 378

10.7 Inheritance: Base Classes and Subclasses 382

10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 384
 10.8.1 Base Class CommissionEmployee 384
 10.8.2 Subclass SalariedCommissionEmployee 387
 10.8.3 Processing CommissionEmployees and
 SalariedCommissionEmployees Polymorphically 391
 10.8.4 A Note About Object-Based and Object-Oriented Programming 391

10.9 Duck Typing and Polymorphism 392

10.10 Operator Overloading 393
 10.10.1 Test-Driving Class Complex 394
 10.10.2 Class Complex Definition 395

10.11 Exception Class Hierarchy and Custom Exceptions 397

10.12 Named Tuples 399

10.13 A Brief Intro to Python 3.7’s New Data Classes 400
 10.13.1 Creating a Card Data Class 401
 10.13.2 Using the Card Data Class 403
 10.13.3 Data Class Advantages over Named Tuples 405
 10.13.4 Data Class Advantages over Traditional Classes 406

10.14 Unit Testing with Docstrings and doctest 406

10.15 Namespaces and Scopes 411

10.16 Intro to Data Science: Time Series and Simple Linear Regression 414

10.17 Wrap-Up 423

II Computer Science Thinking: Recursion, Searching, Sorting and Big O 431

11.1 Introduction 432

11.2 Factorials 433

11.3 Recursive Factorial Example 433

11.4 Recursive Fibonacci Series Example 436

11.5 Recursion vs. Iteration 439

11.6 Searching and Sorting 440

11.7 Linear Search 440

11.8 Efficiency of Algorithms: Big O 442

11.9 Binary Search 444
 11.9.1 Binary Search Implementation 445
11.9.2 Big O of the Binary Search 447
11.10 Sorting Algorithms 448
11.11 Selection Sort 448
 11.11.1 Selection Sort Implementation 449
 11.11.2 Utility Function print_pass 450
 11.11.3 Big O of the Selection Sort 451
11.12 Insertion Sort 451
 11.12.1 Insertion Sort Implementation 452
 11.12.2 Big O of the Insertion Sort 453
11.13 Merge Sort 454
 11.13.1 Merge Sort Implementation 454
 11.13.2 Big O of the Merge Sort 459
11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms 459
11.15 Visualizing Algorithms 460
 11.15.1 Generator Functions 462
 11.15.2 Implementing the Selection Sort Animation 463
11.16 Wrap-Up 468

12 Natural Language Processing (NLP) 477
12.1 Introduction 478
12.2 TextBlob 479
 12.2.1 Create a TextBlob 481
 12.2.2 Tokenizing Text into Sentences and Words 482
 12.2.3 Parts-of-Speech Tagging 482
 12.2.4 Extracting Noun Phrases 483
 12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer 484
 12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer 486
 12.2.7 Language Detection and Translation 487
 12.2.8 Inflection: Pluralization and Singularization 489
 12.2.9 Spell Checking and Correction 489
 12.2.10 Normalization: Stemming and Lemmatization 490
 12.2.11 Word Frequencies 491
 12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet 492
 12.2.13 Deleting Stop Words 494
 12.2.14 n-grams 496
12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 497
 12.3.1 Visualizing Word Frequencies with Pandas 497
 12.3.2 Visualizing Word Frequencies with Word Clouds 500
12.4 Readability Assessment with Textatistic 503
12.5 Named Entity Recognition with spaCy 505
12.6 Similarity Detection with spaCy 507
12.7 Other NLP Libraries and Tools 509
12.8 Machine Learning and Deep Learning Natural Language Applications 509
12.9 Natural Language Datasets 510
12.10 Wrap-Up 510
13 Data Mining Twitter
13.1 Introduction 516
13.2 Overview of the Twitter APIs 518
13.3 Creating a Twitter Account 519
13.4 Getting Twitter Credentials—Creating an App 520
13.5 What’s in a Tweet? 521
13.6 Tweepy 525
13.7 Authenticating with Twitter Via Tweepy 525
13.8 Getting Information About a Twitter Account 527
13.9 Introduction to Tweepy Cursors: Getting an Account’s Followers and Friends 529
13.9.1 Determining an Account’s Followers 529
13.9.2 Determining Whom an Account Follows 532
13.9.3 Getting a User’s Recent Tweets 532
13.10 Searching Recent Tweets 534
13.11 Spotting Trends: Twitter Trends API 536
13.11.1 Places with Trending Topics 536
13.11.2 Getting a List of Trending Topics 537
13.11.3 Create a Word Cloud from Trending Topics 539
13.12 Cleaning/Preprocessing Tweets for Analysis 541
13.13 Twitter Streaming API 542
13.13.1 Creating a Subclass of StreamListener 543
13.13.2 Initiating Stream Processing 545
13.14 Tweet Sentiment Analysis 547
13.15 Geocoding and Mapping 551
13.15.1 Getting and Mapping the Tweets 552
13.15.2 Utility Functions in tweetutilities.py 556
13.15.3 Class LocationListener 558
13.16 Ways to Store Tweets 559
13.17 Twitter and Time Series 560
13.18 Wrap-Up 560

14 IBM Watson and Cognitive Computing
14.1 Introduction: IBM Watson and Cognitive Computing 566
14.2 IBM Cloud Account and Cloud Console 568
14.3 Watson Services 568
14.4 Additional Services and Tools 572
14.5 Watson Developer Cloud Python SDK 573
14.6 Case Study: Traveler’s Companion Translation App 574
14.6.1 Before You Run the App 575
14.6.2 Test-Driving the App 576
14.6.3 SimpleLanguageTranslator.py Script Walkthrough 577
14.7 Watson Resources 587
14.8 Wrap-Up 589
15 Machine Learning: Classification, Regression and Clustering 593

15.1 Introduction to Machine Learning 594
 15.1.1 Scikit-Learn 595
 15.1.2 Types of Machine Learning 596
 15.1.3 Datasets Bundled with Scikit-Learn 598
 15.1.4 Steps in a Typical Data Science Study 599

15.2 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 1 599
 15.2.1 k-Nearest Neighbors Algorithm 601
 15.2.2 Loading the Dataset 602
 15.2.3 Visualizing the Data 606
 15.2.4 Splitting the Data for Training and Testing 608
 15.2.5 Creating the Model 609
 15.2.6 Training the Model 610
 15.2.7 Predicting Digit Classes 610

15.3 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 2 612
 15.3.1 Metrics for Model Accuracy 612
 15.3.2 K-Fold Cross-Validation 616
 15.3.3 Running Multiple Models to Find the Best One 617
 15.3.4 Hyperparameter Tuning 619

15.4 Case Study: Time Series and Simple Linear Regression 620

15.5 Case Study: Multiple Linear Regression with the California Housing Dataset 625
 15.5.1 Loading the Dataset 626
 15.5.2 Exploring the Data with Pandas 628
 15.5.3 Visualizing the Features 630
 15.5.4 Splitting the Data for Training and Testing 634
 15.5.5 Training the Model 634
 15.5.6 Testing the Model 635
 15.5.7 Visualizing the Expected vs. Predicted Prices 636
 15.5.8 Regression Model Metrics 637
 15.5.9 Choosing the Best Model 638

15.6 Case Study: Unsupervised Machine Learning, Part 1—Dimensionality Reduction 639

15.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering 642
 15.7.1 Loading the Iris Dataset 644
 15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas 646
 15.7.3 Visualizing the Dataset with a Seaborn pairplot 647
 15.7.4 Using a KMeans Estimator 650
 15.7.5 Dimensionality Reduction with Principal Component Analysis 652
 15.7.6 Choosing the Best Clustering Estimator 655

15.8 Wrap-Up 656
Contents

16 Deep Learning 665

16.1 Introduction 666
 16.1.1 Deep Learning Applications 668
 16.1.2 Deep Learning Demos 669
 16.1.3 Keras Resources 669

16.2 Keras Built-In Datasets 669

16.3 Custom Anaconda Environments 670

16.4 Neural Networks 672

16.5 Tensors 674

16.6 Convolutional Neural Networks for Vision; Multi-Classification with the MNIST Dataset 676
 16.6.1 Loading the MNIST Dataset 677
 16.6.2 Data Exploration 678
 16.6.3 Data Preparation 680
 16.6.4 Creating the Neural Network 682
 16.6.5 Training and Evaluating the Model 691
 16.6.6 Saving and Loading a Model 696

16.7 Visualizing Neural Network Training with TensorBoard 697

16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 700

16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis with the IMDb Dataset 701
 16.9.1 Loading the IMDb Movie Reviews Dataset 702
 16.9.2 Data Exploration 703
 16.9.3 Data Preparation 705
 16.9.4 Creating the Neural Network 706
 16.9.5 Training and Evaluating the Model 709

16.10 Tuning Deep Learning Models 710

16.11 Convnet Models Pretrained on ImageNet 711

16.12 Reinforcement Learning 712
 16.12.1 Deep Q-Learning 713
 16.12.2 OpenAI Gym 713

16.13 Wrap-Up 714

17 Big Data: Hadoop, Spark, NoSQL and IoT 723

17.1 Introduction 724

17.2 Relational Databases and Structured Query Language (SQL) 728
 17.2.1 A books Database 730
 17.2.2 SELECT Queries 734
 17.2.3 WHERE Clause 734
 17.2.4 ORDER BY Clause 736
 17.2.5 Merging Data from Multiple Tables: INNER JOIN 737
 17.2.6 INSERT INTO Statement 738
 17.2.7 UPDATE Statement 739
 17.2.8 DELETE FROM Statement 739