
19 Data Structures

Much that I bound,
I could not free;
Much that I freed
returned to me.
—Lee Wilson Dodd

‘Will you walk a little faster?’
said a whiting to a snail,
‘There’s a porpoise close behind
us, and he’s treading on my tail.’
—Lewis Carroll

There is always room at the top.
—Daniel Webster

Push on—keep moving.
—Thomas Morton

I’ll turn over a new leaf.
—Miguel de Cervantes

O b j e c t i v e s
In this chapter you’ll learn:

■ To form linked data structures
using pointers, self-referential
classes and recursion.

■ To create and manipulate
dynamic data structures such
as linked lists, queues, stacks
and binary trees.

■ To use binary search trees for
high-speed searching and
sorting.

■ To understand various
important applications of
linked data structures.

■ To understand how to create
reusable data structures with
class templates, inheritance
and composition.

 Special Section: Building Your Own Compiler 778

Special Section: Building Your Own Compiler
In Exercises 8.15–8.17, we introduced Simpletron Machine Language (SML) and you imple-
mented a Simpletron computer simulator to execute programs written in SML. In this section, we
build a compiler that converts programs written in a high-level programming language to SML.
This section “ties” together the entire programming process. You’ll write programs in this new
high-level language, compile these programs on the compiler you build and run them on the simu-
lator you built in Exercise 8.17. You should make every effort to implement your compiler in
an object-oriented manner.

19.29 (The Simple Language) Before we begin building the compiler, we discuss a simple, yet
powerful, high-level language similar to early versions of the popular language BASIC. We call the
language Simple. Every Simple statement consists of a line number and a Simple instruction. Line
numbers must appear in ascending order. Each instruction begins with one of the following Simple
commands: rem, input, let, print, goto, if…goto and end (see Fig. 19.26). All commands except
end can be used repeatedly. Simple evaluates only integer expressions using the +, -, * and / opera-
tors. These operators have the same precedence as in C++. Parentheses can be used to change the
order of evaluation of an expression.

Our Simple compiler recognizes only lowercase letters. All characters in a Simple file should
be lowercase (uppercase letters result in a syntax error unless they appear in a rem statement, in
which case they are ignored). A variable name is a single letter. Simple does not allow descriptive
variable names, so variables should be explained in remarks to indicate their use in a program. Sim-
ple uses only integer variables. Simple does not have variable declarations—merely mentioning a
variable name in a program causes the variable to be declared and initialized to zero automatically.
The syntax of Simple does not allow string manipulation (reading a string, writing a string, com-
paring strings, etc.). If a string is encountered in a Simple program (after a command other than
rem), the compiler generates a syntax error. The first version of our compiler will assume that Sim-
ple programs are entered correctly. Exercise 19.32 asks the student to modify the compiler to per-
form syntax error checking.

Command Example statement Description

rem 50 rem this is a remark Text following rem is for documentation pur-
poses and is ignored by the compiler.

input 30 input x Display a question mark to prompt the user to
enter an integer. Read that integer from the key-
board, and store the integer in x.

let 80 let u = 4 * (j - 56) Assign u the value of 4 * (j - 56). Note that
an arbitrarily complex expression can appear to
the right of the equals sign.

print 10 print w Display the value of w.
goto 70 goto 45 Transfer program control to line 45.

if…goto 35 if i == z goto 80 Compare i and z for equality and transfer con-
trol to line 80 if the condition is true; otherwise,
continue execution with the next statement.

end 99 end Terminate program execution.

Fig. 19.26 | Simple commands.

 Special Section: Building Your Own Compiler 779

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

Simple uses the conditional if…goto statement and the unconditional goto statement to
alter the flow of control during program execution. If the condition in the if…goto statement is
true, control is transferred to a specific line of the program. The following relational and equality
operators are valid in an if…goto statement: <, >, <=, >=, == and !=. The precedence of these oper-
ators is the same as in C++.

Let’s now consider several programs that demonstrate Simple’s features. The first program
(Fig. 19.27) reads two integers from the keyboard, stores the values in variables a and b and com-
putes and prints their sum (stored in variable c).

The program of Fig. 19.28 determines and prints the larger of two integers. The integers are
input from the keyboard and stored in s and t. The if…goto statement tests the condition s >= t.
If the condition is true, control is transferred to line 90 and s is output; otherwise, t is output and
control is transferred to the end statement in line 99, where the program terminates.

Simple does not provide a repetition statement (such as C++’s for, while or do…while).
However, Simple can simulate each of C++'s repetition statements using the if…goto and goto
statements. Figure 19.29 uses a sentinel-controlled loop to calculate the squares of several integers.
Each integer is input from the keyboard and stored in variable j. If the value entered is the sentinel
value -9999, control is transferred to line 99, where the program terminates. Otherwise, k is
assigned the square of j, k is output to the screen and control is passed to line 20, where the next
integer is input.

1 10 rem determine and print the sum of two integers
2 15 rem
3 20 rem input the two integers
4 30 input a
5 40 input b
6 45 rem
7 50 rem add integers and store result in c
8 60 let c = a + b
9 65 rem

10 70 rem print the result
11 80 print c
12 90 rem terminate program execution
13 99 end

Fig. 19.27 | Simple program that determines the sum of two integers.

1 10 rem determine the larger of two integers
2 20 input s
3 30 input t
4 32 rem
5 35 rem test if s >= t
6 40 if s >= t goto 90
7 45 rem
8 50 rem t is greater than s, so print t
9 60 print t

10 70 goto 99
11 75 rem
12 80 rem s is greater than or equal to t, so print s
13 90 print s
14 99 end

Fig. 19.28 | Simple program that finds the larger of two integers.

780 Chapter 19 Data Structures

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

Using the sample programs of Fig. 19.27, Fig. 19.28 and Fig. 19.29 as your guide, write a
Simple program to accomplish each of the following:

a) Input three integers, determine their average and print the result.
b) Use a sentinel-controlled loop to input 10 integers and compute and print their sum.
c) Use a counter-controlled loop to input seven integers, some positive and some negative,

and compute and print their average.
d) Input a series of integers and determine and print the largest. The first integer input in-

dicates how many numbers should be processed.
e) Input 10 integers and print the smallest.
f) Calculate and print the sum of the even integers from 2 to 30.
g) Calculate and print the product of the odd integers from 1 to 9.

19.30 (Building a Compiler; Prerequisite: Complete Exercises 8.16, 8.17, 19.12 and 19.13)
Now that the Simple language has been presented (Exercise 19.29), we discuss how to build a
Simple compiler. First, we consider the process by which a Simple program is converted to SML
and executed by the Simpletron simulator (see Fig. 19.30). A file containing a Simple program is
read by the compiler and converted to SML code. The SML code is output to a file on disk, in which
SML instructions appear one per line. The SML file is then loaded into the Simpletron simulator,
and the results are sent to a file on disk and to the screen. Note that the Simpletron program devel-
oped in Exercise 8.16 took its input from the keyboard. It must be modified to read from a file
so it can run the programs produced by our compiler.

The Simple compiler performs two passes of the Simple program to convert it to SML. The
first pass constructs a symbol table (object) in which every line number (object), variable name

1 10 rem calculate the squares of several integers
2 20 input j
3 23 rem
4 25 rem test for sentinel value
5 30 if j == -9999 goto 99
6 33 rem
7 35 rem calculate square of j and assign result to k
8 40 let k = j * j
9 50 print k

10 53 rem
11 55 rem loop to get next j
12 60 goto 20
13 99 end

Fig. 19.29 | Calculate the squares of several integers.

Fig. 19.30 | Writing, compiling and executing a Simple language program.

Simpletron
Simulator

compiler
Simple file SML file

output to
disk

output to
screen

 Special Section: Building Your Own Compiler 781

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

(object) and constant (object) of the Simple program is stored with its type and corresponding loca-
tion in the final SML code (the symbol table is discussed in detail below). The first pass also pro-
duces the corresponding SML instruction object(s) for each of the Simple statements (object, etc.).
As we’ll see, if the Simple program contains statements that transfer control to a line later in the
program, the first pass results in an SML program containing some “unfinished” instructions. The
second pass of the compiler locates and completes the unfinished instructions, and outputs the
SML program to a file.

First Pass
The compiler begins by reading one statement of the Simple program into memory. The line must
be separated into its individual tokens (i.e., “pieces” of a statement) for processing and compilation
(standard library function strtok can be used to facilitate this task). Recall that every statement
begins with a line number followed by a command. As the compiler breaks a statement into
tokens, if the token is a line number, a variable or a constant, it’s placed in the symbol table. A line
number is placed in the symbol table only if it’s the first token in a statement. The symbolTable
object is an array of tableEntry objects representing each symbol in the program. There is no
restriction on the number of symbols that can appear in the program. Therefore, the symbolTable
for a particular program could be large. Make the symbolTable a 100-element array for now. You
can increase or decrease its size once the program is working.

Each tableEntry object contains three members. Member symbol is an integer containing the
ASCII representation of a variable (remember that variable names are single characters), a line
number or a constant. Member type is one of the following characters indicating the symbol’s type:
'C' for constant, 'L' for line number and 'V' for variable. Member location contains the Sim-
pletron memory location (00 to 99) to which the symbol refers. Simpletron memory is an array of
100 integers in which SML instructions and data are stored. For a line number, the location is the
element in the Simpletron memory array at which the SML instructions for the Simple statement
begin. For a variable or constant, the location is the element in the Simpletron memory array in
which the variable or constant is stored. Variables and constants are allocated from the end of Sim-
pletron’s memory backward. The first variable or constant is stored in location at 99, the next in
location at 98, etc.

The symbol table plays an integral part in converting Simple programs to SML. We learned in
Chapter 8 that an SML instruction is a four-digit integer composed of two parts—the operation
code and the operand. The operation code is determined by commands in Simple. For example, the
simple command input corresponds to SML operation code 10 (read), and the Simple command
print corresponds to SML operation code 11 (write). The operand is a memory location contain-
ing the data on which the operation code performs its task (e.g., operation code 10 reads a value
from the keyboard and stores it in the memory location specified by the operand). The compiler
searches symbolTable to determine the Simpletron memory location for each symbol so the cor-
responding location can be used to complete the SML instructions.

The compilation of each Simple statement is based on its command. For example, after the
line number in a rem statement is inserted in the symbol table, the remainder of the statement is
ignored by the compiler because a remark is for documentation purposes only. The input, print,
goto and end statements correspond to the SML read, write, branch (to a specific location) and halt
instructions. Statements containing these Simple commands are converted directly to SML (note
that a goto statement may contain an unresolved reference if the specified line number refers to a
statement further into the Simple program file; this is sometimes called a forward reference).

When a goto statement is compiled with an unresolved reference, the SML instruction must
be flagged to indicate that the second pass of the compiler must complete the instruction. The flags
are stored in 100-element array flags of type int in which each element is initialized to -1. If the
memory location to which a line number in the Simple program refers is not yet known (i.e., it isn’t

782 Chapter 19 Data Structures

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

in the symbol table), the line number is stored in array flags in the element with the same sub-
script as the incomplete instruction. The operand of the incomplete instruction is set to 00 tem-
porarily. For example, an unconditional branch instruction (making a forward reference) is left as
+4000 until the second pass of the compiler. The second pass of the compiler is described shortly.

Compilation of if…goto and let statements is more complicated than for other state-
ments—they are the only statements that produce more than one SML instruction. For an
if…goto, the compiler produces code to test the condition and to branch to another line if neces-
sary. The result of the branch could be an unresolved reference. Each of the relational and equality
operators can be simulated using SML’s branch zero or branch negative instructions (or a combina-
tion of both).

For a let statement, the compiler produces code to evaluate an arbitrarily complex arithmetic
expression consisting of integer variables and/or constants. Expressions should separate each oper-
and and operator with spaces. Exercise 20.12 and Exercise 20.13 presented the infix-to-postfix
conversion algorithm and the postfix evaluation algorithm used by compilers to evaluate expres-
sions. Before proceeding with your compiler, you should complete each of these exercises. When a
compiler encounters an expression, it converts the expression from infix notation to postfix nota-
tion then evaluates the postfix expression.

How is it that the compiler produces the machine language to evaluate an expression con-
taining variables? The postfix evaluation algorithm contains a “hook” where the compiler can gen-
erate SML instructions rather than actually evaluating the expression. To enable this “hook” in the
compiler, the postfix evaluation algorithm must be modified to search the symbol table for each
symbol it encounters (and possibly insert it), determine the symbol’s corresponding memory loca-
tion and push the memory location onto the stack (instead of the symbol). When an operator is
encountered in the postfix expression, the two memory locations at the top of the stack are popped
and machine language for effecting the operation is produced, using the memory locations as oper-
ands. The result of each subexpression is stored in a temporary location in memory and pushed
back onto the stack so that the evaluation of the postfix expression can continue. When postfix
evaluation is complete, the memory location containing the result is the only location left on the
stack. This is popped, and SML instructions are generated to assign the result to the variable at the
left of the let statement.

Second Pass
The second pass of the compiler performs two tasks: Resolve any unresolved references, and output
the SML code to a file. Resolution of references occurs as follows:

a) Search the flags array for an unresolved reference (i.e., an element with a value other
than -1).

b) Locate the object in array symbolTable, containing the symbol stored in the flags array
(be sure that the type of the symbol is 'L' for line number).

c) Insert the memory location from member location into the instruction with the un-
resolved reference (remember that an instruction containing an unresolved reference
has operand 00).

d) Repeat Steps a, b and c until the end of the flags array is reached.

After the resolution process is complete, the entire array containing the SML code is output to a
disk file with one SML instruction per line. This file can be read by the Simpletron for execution
(after the simulator is modified to read its input from a file). Compiling your first Simple program
into an SML file then executing that file should give you a real sense of personal accomplishment.

A Complete Example
The following example illustrates a complete conversion of a Simple program to SML as it will be
performed by the Simple compiler. Consider a Simple program that inputs an integer and sums the

 Special Section: Building Your Own Compiler 783

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

values from 1 to that integer. The program and the SML instructions produced by the first pass of
the Simple compiler are illustrated in Fig. 19.31. The symbol table constructed by the first pass is
shown in Fig. 19.32.

Simple program
SML location
& instruction Description

5 rem sum 1 to x none rem ignored
10 input x 00 +1099 read x into location 99
15 rem check y == x none rem ignored
20 if y == x goto 60 01 +2098 load y (98) into accumulator

02 +3199 sub x (99) from accumulator
03 +4200 branch zero to unresolved location

25 rem increment y none rem ignored
30 let y = y + 1 04 +2098 load y into accumulator

05 +3097 add 1 (97) to accumulator
06 +2196 store in temporary location 96
07 +2096 load from temporary location 96
08 +2198 store accumulator in y

35 rem add y to total none rem ignored
40 let t = t + y 09 +2095 load t (95) into accumulator

10 +3098 add y to accumulator
11 +2194 store in temporary location 94
12 +2094 load from temporary location 94
13 +2195 store accumulator in t

45 rem loop y none rem ignored
50 goto 20 14 +4001 branch to location 01
55 rem output result none rem ignored
60 print t 15 +1195 output t to screen
99 end 16 +4300 terminate execution

Fig. 19.31 | SML instructions produced after the compiler’s first pass.

Symbol Type Location

5 L 00
10 L 00
'x' V 99
15 L 01
20 L 01
'y' V 98

Fig. 19.32 | Symbol table for program of Fig. 19.31. (Part 1 of 2.)

784 Chapter 19 Data Structures

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

Most Simple statements convert directly to single SML instructions. The exceptions in this
program are remarks, the if…goto statement in line 20 and the let statements. Remarks don’t
translate into machine language. However, the line number for a remark is placed in the symbol
table in case the line number is referenced in a goto or an if…goto statement. Line 20 of the pro-
gram specifies that if the condition y == x is true, program control is transferred to line 60. Because
line 60 appears later in the program, the first pass of the compiler has not as yet placed 60 in the
symbol table (statement line numbers are placed in the symbol table only when they appear as the
first token in a statement). Therefore, it isn’t possible at this time to determine the operand of the
SML branch zero instruction at location 03 in the array of SML instructions. The compiler places
60 in location 03 of the flags array to indicate that the second pass completes this instruction.

We must keep track of the next instruction location in the SML array, because there is not a
one-to-one correspondence between Simple statements and SML instructions. For example, the
if…goto statement of line 20 compiles into three SML instructions. Each time an instruction is
produced, we must increment the instruction counter to the next location in the SML array. Note
that the size of Simpletron’s memory could present a problem for Simple programs with many
statements, variables and constants. It’s conceivable that the compiler will run out of memory. To
test for this case, your program should contain a data counter to keep track of the location at which
the next variable or constant will be stored in the SML array. If the value of the instruction counter
is larger than the value of the data counter, the SML array is full. In this case, the compilation pro-
cess should terminate and the compiler should print an error message indicating that it ran out of
memory during compilation. This serves to emphasize that, although you are freed from the bur-
dens of managing memory by the compiler, the compiler itself must carefully determine the place-
ment of instructions and data in memory, and must check for such errors as memory being
exhausted during the compilation process.

A Step-by-Step View of the Compilation Process
Let’s now walk through the compilation process for the Simple program in Fig. 19.31. The com-
piler reads the first line of the program

5 rem sum 1 to x

into memory. The first token in the statement (the line number) is determined using strtok (see
Chapter 8 and Chapter 19 for a discussion of C++’s C-style string-manipulation functions). The
token returned by strtok is converted to an integer using atoi, so the symbol 5 can be located in

25 L 04
30 L 04
1 C 97
35 L 09
40 L 09
't' V 95
45 L 14
50 L 14
55 L 15
60 L 15
99 L 16

Symbol Type Location

Fig. 19.32 | Symbol table for program of Fig. 19.31. (Part 2 of 2.)

 Special Section: Building Your Own Compiler 785

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

the symbol table. If the symbol is not found, it’s inserted in the symbol table. Since we are at the
beginning of the program and this is the first line, no symbols are in the table yet. So 5 is inserted
into the symbol table as type L (line number) and assigned the first location in SML array (00). Al-
though this line is a remark, a space in the symbol table is still allocated for the line number (in case
it’s referenced by a goto or an if…goto). No SML instruction is generated for a rem statement, so
the instruction counter is not incremented.

The statement

10 input x

is tokenized next. The line number 10 is placed in the symbol table as type L and assigned the first
location in the SML array (00, because a remark began the program so the instruction counter is
currently 00). The command input indicates that the next token is a variable (only a variable can
appear in an input statement). Because input corresponds directly to an SML operation code, the
compiler has to determine the location of x in the SML array. Symbol x is not found in the symbol
table, so it’s inserted into the symbol table as the ASCII representation of x, given type V, and
assigned location 99 in the SML array (data storage begins at 99 and is allocated backward). SML
code can now be generated for this statement. Operation code 10 (the SML read operation code) is
multiplied by 100, and the location of x (as determined in the symbol table) is added to complete
the instruction. The instruction is then stored in the SML array at location 00. The instruction
counter is incremented by 1, because a single SML instruction was produced.

The statement

15 rem check y == x

is tokenized next. The symbol table is searched for line number 15 (which is not found). The line
number is inserted as type L and assigned the next location in the array, 01 (remember that rem
statements do not produce code, so the instruction counter is not incremented).

The statement

20 if y == x goto 60

is tokenized next. Line number 20 is inserted in the symbol table and given type L with the next
location in the SML array 01. The command if indicates that a condition is to be evaluated. The
variable y is not found in the symbol table, so it’s inserted and given the type V and the SML location
98. Next, SML instructions are generated to evaluate the condition. Since there is no direct equiv-
alent in SML for the if…goto, it must be simulated by performing a calculation using x and y and
branching based on the result. If y is equal to x, the result of subtracting x from y is zero, so the
branch zero instruction can be used with the result of the calculation to simulate the if…goto state-
ment. The first step requires that y be loaded (from SML location 98) into the accumulator. This
produces the instruction 01 +2098. Next, x is subtracted from the accumulator. This produces the
instruction 02 +3199. The value in the accumulator may be zero, positive or negative. Since the op-
erator is ==, we want to branch zero. First, the symbol table is searched for the branch location (60
in this case), which is not found. So 60 is placed in the flags array at location 03, and the instruction
03 +4200 is generated (we cannot add the branch location, because we’ve not assigned a location to
line 60 in the SML array yet). The instruction counter is incremented to 04.

The compiler proceeds to the statement

25 rem increment y

The line number 25 is inserted in the symbol table as type L and assigned SML location 04. The
instruction counter is not incremented.

When the statement

30 let y = y + 1

786 Chapter 19 Data Structures

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

is tokenized, the line number 30 is inserted in the symbol table as type L and assigned SML loca-
tion 04. Command let indicates that the line is an assignment statement. First, all the symbols on
the line are inserted in the symbol table (if they are not already there). The integer 1 is added to the
symbol table as type C and assigned SML location 97. Next, the right side of the assignment is con-
verted from infix to postfix notation. Then the postfix expression (y 1 +) is evaluated. Symbol y is
located in the symbol table, and its corresponding memory location is pushed onto the stack. Sym-
bol 1 is also located in the symbol table, and its corresponding memory location is pushed onto the
stack. When the operator + is encountered, the postfix evaluator pops the stack into the right oper-
and of the operator, pops the stack again into the left operand of the operator and produces the
SML instructions

04 +2098 (load y)
05 +3097 (add 1)

The result of the expression is stored in a temporary location in memory (96) with instruction

06 +2196 (store temporary)

and the temporary location is pushed on the stack. Now that the expression has been evaluated, the
result must be stored in y (i.e., the variable on the left side of =). So the temporary location is
loaded into the accumulator, and the accumulator is stored in y with the instructions

07 +2096 (load temporary)
08 +2198 (store y)

Notice that SML instructions appear to be redundant. We’ll discuss this issue shortly.
When the statement

35 rem add y to total

is tokenized, line number 35 is inserted in the symbol table as type L and assigned location 09.
The statement

40 let t = t + y

is similar to line 30. The variable t is inserted in the symbol table as type V and assigned SML
location 95. The instructions follow the same logic and format as line 30, and the instructions 09
+2095, 10 +3098, 11 +2194, 12 +2094 and 13 +2195 are generated. Note that the result of t + y is
assigned to temporary location 94 before being assigned to t (95). Once again, note that the
instructions in memory locations 11 and 12 appear to be redundant. Again, we’ll discuss this
shortly.

The statement

45 rem loop y

is a remark, so line 45 is added to the symbol table as type L and assigned SML location 14.
The statement

50 goto 20

transfers control to line 20. Line number 50 is inserted in the symbol table as type L and assigned
SML location 14. The equivalent of goto in SML is the unconditional branch (40) instruction that
transfers control to a specific SML location. The compiler searches the symbol table for line 20 and
finds that it corresponds to SML location 01. The operation code (40) is multiplied by 100, and
location 01 is added to it to produce the instruction 14 +4001.

The statement

55 rem output result

is a remark, so line 55 is inserted in the symbol table as type L and assigned SML location 15.
The statement

 Special Section: Building Your Own Compiler 787

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

60 print t

is an output statement. Line number 60 is inserted in the symbol table as type L and assigned SML
location 15. The equivalent of print in SML is operation code 11 (write). The location of t is de-
termined from the symbol table and added to the result of the operation code multiplied by 100.

The statement

99 end

is the final line of the program. Line number 99 is stored in the symbol table as type L and assigned
SML location 16. The end command produces the SML instruction +4300 (43 is halt in SML),
which is written as the final instruction in the SML memory array.

This completes the first pass of the compiler. We now consider the second pass. The flags
array is searched for values other than -1. Location 03 contains 60, so the compiler knows that
instruction 03 is incomplete. The compiler completes the instruction by searching the symbol table
for 60, determining its location and adding the location to the incomplete instruction. In this case,
the search determines that line 60 corresponds to SML location 15, so the completed instruction 03
+4215 is produced, replacing 03 +4200. The Simple program has now been compiled successfully.

To build the compiler, you’ll have to perform each of the following tasks:
a) Modify the Simpletron simulator program you wrote in Exercise 8.19 to take its input

from a file specified by the user (see Chapter 17). The simulator should output its re-
sults to a disk file in the same format as the screen output. Convert the simulator to be
an object-oriented program. In particular, make each part of the hardware an object.
Arrange the instruction types into a class hierarchy using inheritance. Then execute the
program polymorphically by telling each instruction to execute itself with an exe-
cuteInstruction message.

b) Modify the infix-to-postfix conversion algorithm of Exercise 20.12 to process multi-
digit integer operands and single-letter variable name operands. [Hint: C++ Standard
Library function strtok can be used to locate each constant and variable in an expres-
sion, and constants can be converted from strings to integers using standard library
function atoi (<csdtlib>).] [Note: The data representation of the postfix expression
must be altered to support variable names and integer constants.]

c) Modify the postfix evaluation algorithm to process multidigit integer operands and
variable name operands. Also, the algorithm should now implement the “hook” dis-
cussed previously so that SML instructions are produced rather than directly evaluating
the expression. [Hint: Standard library function strtok can be used to locate each con-
stant and variable in an expression, and constants can be converted from strings to in-
tegers using standard library function atoi.] [Note: The data representation of the
postfix expression must be altered to support variable names and integer constants.]

d) Build the compiler. Incorporate parts (b) and (c) for evaluating expressions in let state-
ments. Your program should contain a function that performs the first pass of the com-
piler and a function that performs the second pass of the compiler. Both functions can
call other functions to accomplish their tasks. Make your compiler as object oriented as
possible.

19.32 (Optimizing the Simple Compiler) When a program is compiled and converted into SML,
a set of instructions is generated. Certain combinations of instructions often repeat themselves, usu-
ally in triplets called productions. A production normally consists of three instructions such as load,
add and store. For example, Fig. 19.33 illustrates five of the SML instructions that were produced
in the compilation of the program in Fig. 19.31. The first three instructions are the production that
adds 1 to y. Note that instructions 06 and 07 store the accumulator value in temporary location 96
and load the value back into the accumulator so instruction 08 can store the value in location 98.
Often a production is followed by a load instruction for the same location that was just stored. This

788 Chapter 19 Data Structures

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

code can be optimized by eliminating the store instruction and the subsequent load instruction that
operate on the same memory location, thus enabling the Simpletron to execute the program faster.
Figure 19.34 illustrates the optimized SML for the program of Fig. 19.31. Note that there are four
fewer instructions in the optimized code—a memory-space savings of 25 percent.

Modify the compiler to provide an option for optimizing the Simpletron Machine Language
code it produces. Manually compare the nonoptimized code with the optimized code, and calcu-
late the percentage reduction.

19.33 (Modifications to the Simple Compiler) Perform the following modifications to the Simple
compiler. Some of these modifications may also require modifications to the Simpletron Simulator
program written in Exercise 8.17.

1 04 +2098 (load)
2 05 +3097 (add)
3 06 +2196 (store)
4 07 +2096 (load)
5 08 +2198 (store)

Fig. 19.33 | Nonoptimized code from the program of Fig. 19.31.

Simple program
SML location
& instruction Description

5 rem sum 1 to x none rem ignored
10 input x 00 +1099 read x into location 99
15 rem check y == x none rem ignored
20 if y == x goto 60 01 +2098 load y (98) into accumulator

02 +3199 sub x (99) from accumulator

03 +4211 branch to location 11 if zero
25 rem increment y none rem ignored
30 let y = y + 1 04 +2098 load y into accumulator

05 +3097 add 1 (97) to accumulator
06 +2198 store accumulator in y (98)

35 rem add y to total none rem ignored
40 let t = t + y 07 +2096 load t from location (96)

08 +3098 add y (98) accumulator
09 +2196 store accumulator in t (96)

45 rem loop y none rem ignored
50 goto 20 10 +4001 branch to location 01
55 rem output result none rem ignored
60 print t 11 +1196 output t (96) to screen
99 end 12 +4300 terminate execution

Fig. 19.34 | Optimized code for the program of Fig. 19.31.

 Special Section: Building Your Own Compiler 789

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

a) Allow the modulus operator (%) to be used in let statements. Simpletron Machine Lan-
guage must be modified to include a modulus instruction.

b) Allow exponentiation in a let statement using ^ as the exponentiation operator. Sim-
pletron Machine Language must be modified to include an exponentiation instruction.

c) Allow the compiler to recognize uppercase and lowercase letters in Simple statements
(e.g., 'A' is equivalent to 'a'). No modifications to the Simulator are required.

d) Allow input statements to read values for multiple variables such as input x, y. No
modifications to the Simpletron Simulator are required.

e) Allow the compiler to output multiple values in a single print statement such as print
a, b, c. No modifications to the Simpletron Simulator are required.

f) Add syntax-checking capabilities to the compiler so error messages are output when syn-
tax errors are encountered in a Simple program. No modifications to the Simpletron
Simulator are required.

g) Allow arrays of integers. No modifications to the Simpletron Simulator are required.
h) Allow subroutines specified by the Simple commands gosub and return. Command go-

sub passes program control to a subroutine, and command return passes control back
to the statement after the gosub. This is similar to a function call in C++. The same sub-
routine can be called from many gosub commands distributed throughout a program.
No modifications to the Simpletron Simulator are required.

i) Allow repetition statements of the form

for x = 2 to 10 step 2
Simple statements

next

This for statement loops from 2 to 10 with an increment of 2. The next line marks the
end of the body of the for. No modifications to the Simpletron Simulator are required.

j) Allow repetition statements of the form

for x = 2 to 10
Simple statements

next

This for statement loops from 2 to 10 with a default increment of 1. No modifications
to the Simpletron Simulator are required.

k) Allow the compiler to process string input and output. This requires the Simpletron
Simulator to be modified to process and store string values. [Hint: Each Simpletron
word can be divided into two groups, each holding a two-digit integer. Each two-digit
integer represents the ASCII decimal equivalent of a character. Add a machine-language
instruction that will print a string beginning at a certain Simpletron memory location.
The first half of the word at that location is a count of the number of characters in the
string (i.e., the length of the string). Each succeeding half word contains one ASCII
character expressed as two decimal digits. The machine-language instruction checks the
length and prints the string by translating each two-digit number into its equivalent
character.]

l) Allow the compiler to process floating-point values in addition to integers. The Sim-
pletron Simulator must also be modified to process floating-point values.

19.33 (A Simple Interpreter) An interpreter is a program that reads a high-level language program
statement, determines the operation to be performed by the statement and executes the operation
immediately. The high-level language program is not converted into machine language first. Inter-
preters execute slowly because each statement encountered in the program must first be deciphered.
If statements are contained in a loop, the statements are deciphered each time they are encountered
in the loop. Early versions of the BASIC programming language were implemented as interpreters.

790 Chapter 19 Data Structures

© Copyright 1992–2015 by Deitel & Asociates, Inc. and Pearson Education, Inc. All Rights Reserved.

Write an interpreter for the Simple language discussed in Exercise 19.29. The program should
use the infix-to-postfix converter developed in Exercise 19.12 and the postfix evaluator developed
in Exercise 19.13 to evaluate expressions in a let statement. The same restrictions placed on the
Simple language in Exercise 19.29 should be adhered to in this program. Test the interpreter with
the Simple programs written in Exercise 19.29. Compare the results of running these programs in
the interpreter with the results of compiling the Simple programs and running them in the Sim-
pletron Simulator built in Exercise 8.16.

