
RSA

RSA Public-Key Cryptography

In secret-key cryptography, the sender’s plaintext (i.e., the original unencrypted text) is
encrypted with a secret key to form ciphertext (i.e., the encrypted text). The receiver uses
the same secret key to decode the ciphertext, forming the original plaintext. This is called
symmetric encryption. A problem with secret-key cryptography is that the security of the
ciphertext is only as good as the security of the secret key, and several copies of that key
are “floating around.” In an attempt to correct this problem, public-key cryptography was
proposed by Diffie–Hellman.1

In this section, we walk step-by-step through the RSA Public-Key Cryptography
algorithm.2,3,4 In particular, we focus on how to generate:

• the public key that any sender can use to encrypt plaintext into ciphertext for a
particular receiver, and

• the private key that only the particular receiver can use to decrypt the ciphertext.

RSA is based on sophisticated mathematics. However, the steps to generate the public and
private keys, encrypt messages with the public key and decrypt messages with the private
key are straightforward, as we’ll show momentarily. Industrial-quality RSA works with
enormous prime numbers consisting of hundreds of digits. To keep our explanations sim-
ple, we’re going to use only small prime numbers in our explanations. Such small-prime-
number RSA versions are not secure, but they’ll help you understand how RSA works.

1. Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography.” IEEE Transactions on
Information Theory, Vol. IT-22, No. 6, pp. 644–654. November 1976. Accessed November 20,
2021. https://ee.stanford.edu/~hellman/publications/24.pdf.

2. “RSA (cryptosystem).” Accessed November 20, 2021. https://en.wikipedia.org/wiki/

RSA_(cryptosystem).
3. “RSA Algorithm.” Accessed November 20, 2021. https://simple.wikipedia.org/wiki/

RSA_algorithm.
4. K. Moriarty, B. Kaliski, J. Jonsson and A. Rusch, “PKCS #1: RSA Cryptography Specifications Version

2.2.” November 2016. Accessed November 20, 2021. https://tools.ietf.org/html/rfc8017.

Sec

© Copyright 1992–2022 by Deitel & Associates, Inc. and Pearson Education, Inc. All Rights Reserved

2 RSA

Public-Key Cryptography
Whitfield Diffie and Martin Hellman introduced public-key cryptography5 to address
secret-key cryptography’s weakness—that the secret key must be known by both the
sender and the receiver. They came up with the idea but not an implementation of the
scheme.

RSA Public-Key Cryptography
Rivest, Shamir and Adelman were the first to publish a working implementation of public-
key cryptography. The scheme, called RSA6, bears the initials of their last names. RSA is
the most widely implemented public-key cryptography scheme in the world.7 Because
RSA can be slow,8 it’s often used in conjunction with symmetric private-key encryption,
using RSA only to securely send the secret key.9,10

Historical Notes
Clifford Cocks created a workable public-key scheme several years before the RSA paper
was published.11 His work was classified, so it was not revealed until about 20 years after
RSA appeared. The company RSA Security held a patent on the RSA algorithm. In 2000,
that patent was coming due for renewal. Rather than renewing it, they placed the algo-
rithm into the public domain.12

RSA Algorithm Steps
For a nice video explanation of the RSA algorithm, see the following two-part video pre-
sentation:

• The RSA Encryption Algorithm (1 of 2: Computing an Example)13

• The RSA Encryption Algorithm (2 of 2: Generating the Keys)14

5. Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography.” IEEE Transactions on
Information Theory, Vol. IT-22, No. 6, pp. 644–654. November 1976. Accessed November 20,
2021. https://ee.stanford.edu/~hellman/publications/24.pdf.

6. R. Rivest; A. Shamir; L. Adleman (February 1978). “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems” (PDF). Communications of the ACM. 21 (2): 120–126. Accessed No-
vember 20, 2021. https://people.csail.mit.edu/rivest/Rsapaper.pdf.

7. Michael Cobb, “RSA algorithm (Rivest-Shamir-Adleman).” Last updated in November 2021. Ac-
cessed November 20, 2021. https://searchsecurity.techtarget.com/definition/RSA.

8. “RSA (cryptosystem).” Accessed November 20, 2021. https://en.wikipedia.org/wiki/

RSA_(cryptosystem).
9. Josh Lake, “What is RSA encryption and how does it work?” March 18, 2021. Accessed November

20, 2021. https://www.comparitech.com/blog/information-security/rsa-encryption/.
10. Ron Franklin, “AES vs. RSA Encryption: What Are the Differences?” March 13, 2021. Accessed No-

vember 20, 2021. https://www.precisely.com/blog/data-security/aes-vs-rsa-

encryption-differences.
11. “Clifford Cocks.” Accessed January 8, 2021. https://en.wikipedia.org/wiki/Clifford_Cocks.
12. “RSA Security Releases RSA Encryption Algorithm into Public Domain.” September 6, 2000. Accessed

November 20, 2021. https://web.archive.org/web/20071120112201/http://www.rsa.com/
press_release.aspx?id=261.

13. Woo, Eddie (misterwootube). “The RSA Encryption Algorithm (1 of 2: Computing an Example),”
November 4, 2014. https://www.youtube.com/watch?v=4zahvcJ9glg.

14. Woo, Eddie (misterwootube). “The RSA Encryption Algorithm (2 of 2: Generating the Keys),” No-
vember 4, 2014. https://www.youtube.com/watch?v=oOcTVTpUsPQ.

Perf

© Copyright 1992–2022 by Deitel & Associates, Inc. and Pearson Education, Inc. All Rights Reserved

RSA 3

Steps 1–5 below use small integer values to explain how the RSA algorithm generates
a public-key/private-key pair. Next, Step 6 uses the public key to encrypt plaintext into
ciphertext. Then, Step 7 uses the private key to decrypt the ciphertext back to the original
plaintext. The steps we show are based on the original RSA paper15 and the RSA Algo-
rithm Wikipedia page.16

RSA Algorithm Step 1—Choose Two Prime Numbers
Choose two different prime numbers, p and q. We’ll use small prime numbers for this dis-
cussion—p = 13 and q = 17. This will keep the calculations manageable in our discussions
and on your computer using C++ with its limited-range, built-in integer data types. In
commercial-grade RSA cryptography systems, these prime numbers typically are hundreds
of digits each and chosen at random. For a sense of how large the integers in RSA can be,
visit the RSA Numbers webpage

https://en.wikipedia.org/wiki/RSA_numbers

which shows integers from 100 to 617 digits in length. The C++ integer data types int,
long and long long cannot hold integers this large. Libraries like Boost.Multiprecision17

are required to accommodate arbitrary-sized integers.

RSA Algorithm Step 2—Calculate the Modulus (n), Which Is Part of Both the
Public and Private Keys
Calculate the modulus n, which is simply the product of p and q:

n = p * q

Based on p = 13 and q = 17, n is 221. As you’ll see, n is part of both the public and private
keys. The p and q values are kept private.

RSA Algorithm Step 3—Calculate the Totient Function
Calculate —pronounced “phi of n”—which is Euler’s totient function.18 This is cal-
culated simply as:

 = (p - 1) * (q - 1)

Given p = 13 and q = 17, is

 = 12 * 16 = 192

This number is used in the calculations that determine the encryption exponent (e) and
decryption exponent (d), which will help us encrypt the plaintext and decrypt the cipher-
text, respectively.

15. R. Rivest; A. Shamir; L. Adleman (February 1978). “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems” (PDF). Communications of the ACM. 21 (2): 120–126. https://
people.csail.mit.edu/rivest/Rsapaper.pdf.

16. “RSA Algorithm.” Accessed January 6, 2021. https://simple.wikipedia.org/wiki/

RSA_algorithm.
17. John Maddock and Christopher Kormanyos, “Boost.Multiprecision,” Accessed November 20, 2021.

https://www.boost.org/doc/libs/1_72_0/libs/multiprecision/doc/html/index.html.
18. “Euler’s totient function.” Accessed January 7, 2021. https://en.wikipedia.org/wiki/

Euler%27s_totient_function.

Φ n()

Φ n()

Φ n()

Φ n()

© Copyright 1992–2022 by Deitel & Associates, Inc. and Pearson Education, Inc. All Rights Reserved

4 RSA

RSA Algorithm Step 4—Select the Public-Key Exponent (e) for Encryption
Calculations
Next, we choose an exponent, e, for encryption, which is subject to the following rules:

• 1 < e <

• e must be coprime with .

Two integers are coprime if they have no common factors other than 1.
In our example, the integers that satisfy the first rule for = 192 are the values 2–

191. The prime factorization of 192 is
192 = 2 * 2 * 2 * 2 * 2 * 2 * 3

The value for e must be coprime with , so we must eliminate from consideration for
e any prime factors and all their multiples. Thus, the value 2 and the other even integers
from 2–190 are eliminated, as are the value 3 and its multiples. This leaves the following
odd values as possible values for e:

 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49
 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97
101 103 107 109 113 115 119 121 125 127 131 133 137 139 143 145
149 151 155 157 161 163 167 169 173 175 179 181 185 187 191

Any of these values can be used as the public encryption key’s exponent (e). For our con-
tinuing discussion, we’ll choose 37, so our public key is (37, 221).

RSA Algorithm Step 5—Select the Private-Key Exponent (d) for Encryption
Calculations
The final step is to determine the private key’s exponent, d, for decryption. We must
choose a value for d such that

(d * e) mod = 1

In our example, the first value of d for which this is true is 109. We can check whether the
preceding calculation produces 1 by plugging in the values of d, e and :

(109 * 37) mod 192

The value of 109 * 37 is 4033. If you multiply 192 by 21, the result is 4032, leaving a
remainder of 1. So, 109 is a valid value for d. There are many potential values of d—each
is 109 plus a multiple of the totient (192). For instance, 301 (109 + 1 * 192):

(301 * 37) mod 192

301 * 37 is 11137, which has the remainder 1 when divided by 192—192 * 58 is 11136,
leaving a remainder of 1. So values for d such as the following will work:

109 301 493 685 877 ...

We chose 109, so our private key is (109, 221).

RSA Algorithm Step 6—Encrypting a Message with RSA
Once you have the public key, it’s easy to encrypt a message using RSA. Given a plaintext
integer message (M) to encrypt into ciphertext (C) and a public key consisting of two pos-
itive integers e (for encrypt) and n—commonly represented as (e, n)—a message
sender can encrypt M with the calculation:

C = Me mod n

Φ n()
Φ n()

Φ n()

Φ n()

Φ n()

Φ n()

© Copyright 1992–2022 by Deitel & Associates, Inc. and Pearson Education, Inc. All Rights Reserved

RSA 5

The value of M must be in the range 0 <= M < n. Otherwise, you must break the message
into values within that range and encrypt each separately.

Let’s encrypt the M value 122 using our public key (37, 221):

C = 12237 mod 221

The value 12237 is an enormous number, but you can perform this calculation using the
Wolfram Alpha website at

https://www.wolframalpha.com/input/

Enter the calculation as follows (the ^ represents exponentiation in Wolfram Alpha):

122^37 mod 221

You’ll see that the result is 5, which is our ciphertext.

RSA Algorithm Step 7—Decrypting a Message with RSA
It’s also easy to decrypt a message if you have the private key. Given a ciphertext integer
message (C) to decrypt into the original plaintext message (M) and a private key consist-
ing of two positive integers d and n—commonly represented as (d, n)—a message
receiver can decrypt C with the following calculation:

M = Cd mod n

Let’s decrypt the C value 5 using our public key (109, 221):

C = 5109 mod 221

Once again, the value 5109 is an enormous number, but you can perform this calculation
using Wolfram Alpha by entering the calculation as follows:

5^109 mod 221

You’ll see that the result is 122, which indeed is our plaintext.
Note that n is part of both the public key and the private key. You’ll also see that

the exponent d’s value is based on the exponent e and the modulus value n.

Encrypting and Decrypting Strings
Suppose you wish to use RSA to encrypt a plaintext message, such as

Damn the torpedoes, full speed ahead!19

As you know, the RSA algorithm encrypts only integer messages in the range 0 <= M < n.
To encrypt the preceding message, you must map the characters to integer values.

One way to convert characters to integers is to use each character’s numeric value in
the underlying character set. You might, for example, assume ASCII characters, which
have integer values in the range 0–127. If a character’s integer value is less than n, you can
encrypt that value as shown previously. You can store each resulting ciphertext integer in
an integer array. If you try to display those ciphertext integers as characters, you may see
some strange symbols. For instance, the ciphertext integers might represent special char-
acters, such as newlines or tabs, or might be outside the ASCII range.

19. David Glasgow Farragut—an American Civil War Union officer and the first full admiral in the U.S.
Navy. Accessed January 8, 2021. https://en.wikipedia.org/wiki/David_Farragut.

© Copyright 1992–2022 by Deitel & Associates, Inc. and Pearson Education, Inc. All Rights Reserved

