
13

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved.
You may not repost this file without express written consent.

Data Mining Twitter

O b j e c t i v e s
In this chapter, you’ll:
■ Understand Twitter’s impact

on businesses, brands,
reputation, sentiment analysis,
predictions and more.

■ Use Tweepy, one of the most
popular Python Twitter API
clients for data mining Twitter.

■ Use various Twitter v2 API
methods.

■ Get information about a
specific Twitter account.

■ Search for past tweets that
meet your criteria.

■ Sample the stream of live
tweets as they’re happening.

■ Request additional metadata
in Twitter responses via the
Twitter v2 API’s expansions
and fields.

■ Clean and preprocess tweets
to prepare them for analysis.

■ Use NLP techniques you
learned in the preceding
chapter to translate foreign
language tweets into English
and to perform sentiment
analysis on tweets.

■ Spot trends with the Twitter
v1.1 Trends API.

■ Map tweets using the folium
library and OpenStreetMap
map tiles.

■ Understand various ways to
store tweets using techniques
discussed throughout this
book.

PyCDS_13_DataMiningTwitter.fm Page 515 Sunday, September 4, 2022 4:37 PM

516 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

13.1 Introduction
We’re always trying to predict the future. Will it rain at our upcoming picnic? Will the
stock market or individual securities go up or down? When and by how much? How will
people vote in the next election? What’s the chance that a new oil exploration venture will
strike oil, and if so, how much would it likely produce? Will a baseball team win more
games if it changes its batting philosophy to “swing for the fences?” How much customer
traffic does an airline anticipate over the next many months? And hence how should the
company buy oil commodity futures to guarantee that it will have the supply it needs and
hopefully at a minimal cost? What track is a hurricane likely to take, and how powerful
will it become (category 1, 2, 3, 4 or 5)? That kind of information is crucial to emergency
preparedness efforts. Is a financial transaction likely to be fraudulent? Will a mortgage
default? Is a disease likely to spread rapidly, and if so, to what geographic area?

Prediction is a challenging and often costly process, but the rewards can be significant.
Using the technologies in this and the upcoming chapters, you’ll see how AI, often in con-
cert with big data, is rapidly improving prediction capabilities.

Data Mining
This chapter focuses on data mining Twitter, looking for the sentiment in tweets. Data
mining is the process of searching through extensive collections of data, often big data, to
find insights that can be valuable to individuals and organizations. The sentiment that you
data mine from tweets could help predict the results of an election, the revenues a new
movie is likely to generate and the success of a company’s marketing campaign. It could
also help companies spot weaknesses in competitors’ product offerings.

13.1 Introduction
13.2 Overview of the Twitter APIs
13.3 Creating a Twitter Developer Account
13.4 Getting Twitter Credentials—Creating

an App
13.5 What’s in a Twitter API Response?
13.6 Installing Tweepy, geopy, folium

and deep-translator
13.7 Authenticating with Twitter Via

Tweepy to Access Twitter v2 APIs
13.8 Getting Information About a Twitter

Account
13.9 Intro to Tweepy Paginators: Getting

More Than One Page of Results
13.9.1 Determining an Account’s Followers
13.9.2 Determining Whom an Account

Follows
13.9.3 Getting a User’s Recent Tweets

13.10 Searching Recent Tweets; Intro to
Twitter v2 API Search Operators

13.11 Spotting Trending Topics
13.11.1 Places with Trending Topics
13.11.2 Getting a List of Trending Topics
13.11.3 Create a Word Cloud from Trending

Topics
13.12 Cleaning/Preprocessing Tweets for

Analysis
13.13 Twitter Streaming API

13.13.1 Creating a Subclass of
StreamingClient

13.13.2 Initiating Stream Processing
13.14 Tweet Sentiment Analysis
13.15 Geocoding and Mapping

13.15.1 Getting and Mapping the Tweets
13.15.2 Utility Functions in

tweetutilities.py
13.15.3 Class LocationListener

13.16 Storing Tweets
13.17 Twitter and Time Series
13.18 Wrap-Up

Exercises

PyCDS_13_DataMiningTwitter.fm Page 516 Sunday, September 4, 2022 4:37 PM

13.1 Introduction 517

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Twitter v2 (version 2) Web Service APIs
You’ll interact with the Twitter v2 (version 2) web service APIs. You’ll use search criteria
to locate tweets in the enormous base of past tweets. You’ll tap into Twitter’s live tweet
stream to receive new tweets as they happen. You’ll locate worldwide and specific loca-
tions’ trending topics. You’ll find that much of what you learned in the NLP chapter will
be useful in building Twitter applications.

As you’ve done throughout this book, you’ll use powerful libraries to perform signif-
icant tasks with just a few lines of code. This is why Python and its robust open-source
community are appealing.

The Twitterverse
Twitter has displaced the major news organizations as the first source for newsworthy
events—in this sense, Twitter is a classic disruptive technology. Most Twitter posts are
public and happen in real time as events unfold globally. People speak frankly about any
subject and tweet about their personal and business lives. They comment on the social,
entertainment and political scenes and whatever else comes to mind. With their mobile
phones, they take and post photos and videos of events as they happen. You’ll hear the
terms Twitterverse and Twittersphere to mean the hundreds of millions of users who
have anything to do with sending, receiving and analyzing tweets.

What Is Twitter?
Twitter was founded in 2006 as a microblogging company and today is one of the most
popular sites on the Internet. Its concept is simple. People write short messages called tweets.
Initially, these were limited to 140 characters but are now limited to 280 characters. Anyone
can generally choose to follow the tweets of anyone else. This differs from the closed, tight
communities on social media platforms such as Meta (formerly called Facebook), LinkedIn
and many others, where “following relationships” must be reciprocal.

Twitter Statistics
Twitter has hundreds of millions of users. Based on the following Twitter Statistics page

https://www.internetlivestats.com/twitter-statistics/

we calculated in August 2022 that there is an average of 10,000+ tweets per second, result-
ing in about 880 million tweets per day. Searching online for “Internet statistics” and
“Twitter statistics” will help you put these numbers in perspective. Some “tweeters” have
more than 100 million followers. Dedicated tweeters generally post several per day to keep
their followers engaged. Tweeters with the largest followings are typically entertainers and
politicians. Developers can tap into the live stream of tweets as they’re happening. This
has been likened to “drinking from a fire hose” because the tweets flow to you so quickly.

Twitter and Big Data
Twitter has become a favorite big data source for researchers and business people world-
wide. Developers have free access to a small portion of the more recent tweets, subject to
tweet caps by their account type.1 Twitter offers paid access to much larger portions of the
all-time tweets database.

1. https://developer.twitter.com/en/docs/twitter-api/tweet-caps. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 517 Sunday, September 4, 2022 4:37 PM

518 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Cautions
You can’t always trust everything you read on the Internet, and tweets are no exception.
For example, people might use false information (i.e., “fake news”) to manipulate financial
markets or influence political elections. Hedge funds often trade securities based partly on
the tweet streams they follow, but they’re cautious. That’s one of the challenges of building
business-critical or mission-critical systems based on social media content.

We use web services extensively throughout the book. Internet connections can be
lost, services can change, and some services are not available in all countries. This is the
real world of cloud-based programming. We cannot program with the same reliability as
desktop apps when using web services.

Self Check
1 (Fill-In) You connect to Twitter’s v2 APIs via .
Answer: web services.

2 (True/False) With Twitter, “following relationships” must be reciprocal.
Answer: False. This is true in most other social networks. With Twitter, you can follow
people without them following you.

13.2 Overview of the Twitter APIs
Twitter’s APIs are cloud-based web services, so an Internet connection is required to exe-
cute the code in this chapter. Web services are methods you call in the cloud, as you’ll do
with the Twitter APIs in this chapter, the IBM Watson APIs in the next chapter and other
APIs you’ll use as computing becomes more cloud-based. Each API method has a web ser-
vice endpoint, represented by a URL that’s used to invoke that method over the Internet.

The Twitter v2 APIs include many categories of functionality, some free and some
paid. Most have rate limits that restrict the number of times you can use them in 15-min-
ute intervals. In this chapter, you’ll use the Tweepy library to invoke methods from the
following Twitter API categories:

• Users API—Access information about Twitter user accounts.

• Tweets API—Search through past tweets, access tweet streams to tap into tweets
happening now and more.

• Trends API (from the Twitter v1.1 APIs)—Find locations of trending topics and
get lists of trending topics by location.

See the additional Twitter API categories and the extensive list of subcategories and their
methods at:

https://developer.twitter.com/en/docs/api-reference-index

Rate Limits: A Word of Caution
Twitter expects developers to use its services responsibly. Each Twitter API method has a
rate limit, which is the maximum number of requests (i.e., calls to that method) you can
make during a 15-minute window. Twitter may block you from using its APIs if you con-
tinue to call a given API method after its rate limit has been reached.

PyCDS_13_DataMiningTwitter.fm Page 518 Sunday, September 4, 2022 4:37 PM

13.3 Creating a Twitter Developer Account 519

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Before using any API method, read its documentation and understand its rate limits.2

As you’ll see, Tweepy can wait when it encounters rate limits to prevent you from exceed-
ing Twitter’s rate-limit restrictions. Some methods list both user rate limits and app rate
limits. All of this chapter’s examples use app rate limits. User rate limits are for apps that
enable individual users to log into Twitter, such as smartphone apps that interact with
Twitter on your behalf.

For details on rate limiting, see

https://developer.twitter.com/en/docs/rate-limits

For specific rate limits on individual API methods, see

https://developer.twitter.com/en/docs/twitter-api/rate-limits

and each Twitter API method’s documentation.

Other Restrictions
Twitter’s free APIs are a goldmine for data mining. You’ll be amazed at the applications
you can build and how these will help you improve your personal and career endeavors.
However, your developer account could be terminated if you do not follow Twitter’s
rules and regulations. You should carefully read Twitter’s Terms of Service

https://twitter.com/tos

and the documents it links to.
You’ll see later in this chapter that you can search tweets only for the last seven days

and get only a limited number of tweets using the free Twitter APIs. Some books and arti-
cles say you can get around those limits by scraping tweets directly from twitter.com.
However, the Terms of Service explicitly say that “scraping the Services without the prior
consent of Twitter is expressly prohibited.”

Self Check
1 (Fill-In) With the API, you can obtain information about specific Twitter
accounts.
Answer: Users

2 (True/False) Twitter allows you to make unlimited calls to its API methods.
Answer: False. Twitter API methods have rate limits, and Twitter may block you from us-
ing its APIs if you exceed the rate limits.

13.3 Creating a Twitter Developer Account
Twitter requires you to apply for a developer account to be able to use their APIs. Go to

https://developer.twitter.com/

and click the Sign up button. If you do not already have a Twitter account, you must reg-
ister for one as part of the developer-account sign-up process.

2. Keep in mind that Twitter could change these limits.

PyCDS_13_DataMiningTwitter.fm Page 519 Sunday, September 4, 2022 4:37 PM

520 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Twitter Developer Account Levels
Twitter reviews every developer-account application, and approval is not guaranteed. If
you are approved, your developer account will have one of three levels, which Twitter
describes as follows:3

• Essentials—“The best way to get started quickly, test, and build across all end-
points.”

• Elevated— “More access for solutions that are beginning to experience growth or
who prefer to work with multiple App environments.”

• Academic Research—“Access to public data on nearly any topic to advance
research objectives of Master’s students, doctoral candidates, post-docs, and fac-
ulty at an academic institution or university.”

Some Twitter v2 APIs are accessible only to Elevated-level and higher accounts. For each
API, the Twitter documentation specifies the minimum account level and the rate-limit
differences between levels, if any.

Choosing a Developer Account Application Type
There are separate developer applications for Professional, Hobbyist, and Academic
Research use. You should choose the type most appropriate for your use case. For this
chapter’s examples, you can choose Hobbyist then Exploring the API. You may be asked to
apply for an Elevated application. If so, click Get started, then:

1. On the Basic info tab, fill in the form with your information and click Next.

2. On the Intended use tab, describe how you intend to use the APIs.

3. Answer the other questions provided. For this chapter’s examples, you will not
use the tweet, retweet, like, follow or direct message functionality; will not display
tweets or aggregate data about Twitter content outside of Twitter; and will not
make Twitter content available to a government entity.

4. Click Next to review your answers, then click Next again.

5. Carefully read and agree to Twitter’s Developer agreement & policy, then click
Submit to complete the application. You will be asked to confirm your email ad-
dress.

Essentials Level Accounts and the Twitter v1.1 APIs
As of mid-2022, Twitter requires new developer accounts to use the Twitter v2 APIs.
However, Twitter has not yet migrated some v1.1 APIs to v2. For this reason,
Section 13.11’s trending-topics examples use the v1.1 APIs. Essentials-level accounts can-
not use the Twitter v1.1 APIs, but you can apply for an Elevated account to get access to
them. If you already had a Twitter developer account before Twitter implemented the v2
API requirement, your account is automatically at the Elevated level.

3. https://developer.twitter.com/en/products/twitter-api. Accessed August 27, 2022.

PyCDS_13_DataMiningTwitter.fm Page 520 Sunday, September 4, 2022 4:37 PM

13.4 Getting Twitter Credentials—Creating an App 521

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

13.4 Getting Twitter Credentials—Creating an App
Once you have a Twitter developer account, you must obtain credentials for interacting
with the Twitter APIs. To do so, you’ll create a project and an app within that project.
Each app has separate credentials. To create an app, log into

https://developer.twitter.com/portal/dashboard

and perform the following steps:

1. In your dashboard, click + Create Project

2. In the Project name step, specify a project name. We entered DeitelTest. Click
Next.

3. In the Use case step, specify your use case. We selected Exploring the API. Click
Next.

4. In the Project description step, describe what you intend to do with your project.
We entered “Experimenting with the Twitter v2 APIs using the examples in
the textbook Intro to Python for Computer Science and Data Science:
Learning to Program with AI, Big Data and the Cloud.” Click Next.

5. In the Add an existing App or create a new App step, click Create new.

6. In the App Environment step, select Development (this is the default). Click Next.

7. In the App name step, specify an app name. We entered DeitelTestApp. Click
Next. Keep this page open for the moment.

Getting Your Credentials
After you complete Step 7 above, you’ll see a page titled Here are your keys & tokens show-
ing your Consumer API keys—the API Key and the API Key Secret—and a Bearer
Token. Either the API keys or the bearer token can be used to authenticate with Twitter.
According to

https://developer.twitter.com/en/docs/authentication/oauth-2-0/
bearer-tokens

bearer tokens are more secure, so we’ll use the bearer token in this chapter. Click Copy to
the right of the bearer token’s lengthy alphanumeric string.

Storing Your Credentials
As a good practice, do not include your API keys or bearer token (or any other credentials,
like usernames and passwords) directly in your source code, as that would expose them to
anyone reading the code. You should store your keys in a separate file and never share that
file with anyone.4

The code you’ll execute in subsequent sections assumes that you place your bearer
token into the file keys.py shown below. You can find this file in the ch13 examples
folder:

4. Good practice would be to use an encryption library to encrypt your keys, bearer tokens and other
credentials, then read them in and decrypt them only as you pass them to Twitter.

bearer_token='YourBearerToken'
mapquest_key='YourAPIKey'

PyCDS_13_DataMiningTwitter.fm Page 521 Sunday, September 4, 2022 4:37 PM

522 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Open the keys.py file in a text editor, select YourBearerToken inside the bearer_token
string and paste your unique bearer token inside the quotes. Ensure you do not have any
extra spaces before or after the bearer token inside the string’s quotes. Then, save the file
and keep it open, as you’ll add another API key momentarily.

OAuth 2.0
The API keys or bearer token can be used in the OAuth 2.0 authentication process5,6—
known as the “OAuth dance”—that Twitter requires to access its APIs. With Tweepy,
you’ll provide a bearer token, and it will handle the authentication details for you.

Self Check
1 (Fill-In) The API keys and bearer token each can be used as part of the authen-
tication process that Twitter uses to enable access to its APIs.
Answer: OAuth 2.0.

2 (True/False) Once you have a Twitter developer account, you must obtain credentials
to interact with APIs. To do so, you’ll create a project containing an app. Each app has
separate credentials.
Answer: True.

13.5 What’s in a Twitter API Response?
The Twitter API methods return JSON (JavaScript Object Notation) objects. JSON is a
human-readable and computer-readable, text-based data-interchange format used to rep-
resent objects as collections of name–value pairs. JSON is commonly used when invoking
web services to send and receive across the Internet.

JSON objects are similar to Python dictionaries. Each JSON object contains a list of
property-name strings and corresponding values in the following curly braced format:

{propertyName1: value1, propertyName2: value2}

As in Python, JSON lists are comma-separated values in square brackets:

[value1, value2, value3]

For your convenience, Tweepy handles the JSON for you behind the scenes, converting
JSON to Python objects using classes defined in the Tweepy library.

Default Properties of a Tweet Object
When you acquire a tweet, Twitter returns a JSON object that, by default, contains the
tweet’s unique ID number and its text (up to a maximum of 280 characters).

Twitter Metadata and the Twitter v1.1 APIs
In the Twitter v1.1 APIs, a tweet’s JSON object automatically included many additional
metadata attributes that described aspects of the tweet, such as:

• when it was created,

• who created it,

5. https://developer.twitter.com/en/docs/authentication/overview. Accessed August 25, 2022.
6. https://oauth.net/. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 522 Sunday, September 4, 2022 4:37 PM

13.5 What’s in a Twitter API Response? 523

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

• lists of the hashtags, URLs, @-mentions and media (such as images and videos)
included in the tweet,

• and more.

A typical tweet’s JSON object typically contained up to 9,000 characters of metadata—
also called the payload. This payload was often far more than your app needed.

Twitter v2 API Expansions and Fields
When you call a Twitter v2 API method, you use fields and expansions7 to request the
precise metadata your app requires. Fields are additional metadata attributes you’d like
Twitter to return to your app. For example, when you get a tweet, you might need

• the unique author_id attribute, indicating a tweet’s sender, or

• the tweet’s created_at attribute, indicating when the user sent the tweet was sent.

For the complete list of tweet fields, visit

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/
object-model/tweet

Some fields are associated with other Twitter metadata objects that, in turn, have their
own fields. For example, associated with a tweet’s unique author_id attribute is a user
JSON object. You use an Expansion to request that Twitter include associated metadata
objects you’d like Twitter to return to your app. Each associated object will contain its
default attributes—for a user object, these would be the user’s unique id number, name
and username, but you can request more. The complete list of user fields can be viewed at

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/
object-model/user

For a general overview of all the JSON objects that Twitter APIs return, and links to the
specific object details, see

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/
introduction

Sample JSON for the NASA Account’s 10 Most Recent Tweets
Here’s a portion of the JSON from a Twitter API response to a request that asked for
recent tweets from the @NASA Twitter account. We added line numbers, reformatted the
JSON for readability and show two tweets returned. The online Twitter API documenta-
tion for each method explains its response.8

7. https://developer.twitter.com/en/docs/twitter-api/data-dictionary/using-fields-

and-expansions. Accessed August 25, 2022.

1 {
2 "data": [
3 {
4 "id": "1562156100136292352",
5 "text": "RT @NASAInSight: Thanks again for all the kind thoughts

 you’ve been sending. There’s still time to write me a note
 for the mission team to…"

6 },

8. Data obtained on August 24, 2022.

PyCDS_13_DataMiningTwitter.fm Page 523 Sunday, September 4, 2022 4:37 PM

524 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Self Check
1 (Fill-In) Tweet objects returned by the Twitter APIs each contain default attributes,
but you may request additional attributes that describe other aspects of each tweet.
Answer: metadata.

2 (True/False) JSON is a human-readable and computer-readable format that makes
objects easy to send and receive across the Internet.
Answer: True.

13.6 Installing Tweepy, geopy, folium and deep-
translator
We’ll use the Tweepy library9—one of the most popular Python libraries for interacting
with the Twitter APIs.10 Tweepy makes it easy to access Twitter’s capabilities and hides
from you the complexities of processing the JSON objects returned by the Twitter APIs.
You can view Tweepy’s documentation at

https://docs.tweepy.org/en/stable/

Installing Tweepy
To install Tweepy, open your Anaconda Prompt (Windows), Terminal (macOS/Linux)
or shell (Linux), then execute the following command:

pip install tweepy

Windows users might need to run the Anaconda Prompt as an Administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

7 {
8 "id": "1561886047331487744",
9 "text": "We see Martian dust devils (whirlwinds) from the ground, as

10 in this shot from the Opportunity rover in 2016, left. From
 space, we can see the tracks they leave behind, as in this
 view of dunes from Mars Reconnaissance Orbiter in 2009,
 right. More: https://t.co/kd1BNEDBUD https://t.co/
 RxeKTI5Fv5"
11 },
12 ...
13],
14 "meta": {
15 "result_count": 10,
16 "newest_id": "1562156100136292352",
17 "oldest_id": "1555635141728382976",
18 "next_token": "7140dibdnow9c7btw422nm76p6owdso7rqahg96mulyd2"
19 }
20 }

9. https://www.tweepy.org/. Accessed August 25, 2022.
10. For many additional libraries, see https://developer.twitter.com/en/docs/twitter-api/

tools-and-libraries/v2#python. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 524 Sunday, September 4, 2022 4:37 PM

13.6 Installing Tweepy, geopy, folium and deep-translator 525

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Installing geopy
As you work with Tweepy, you’ll also use functions from our tweetutilities.py file
(provided with this chapter’s example code). One of the utility functions used by the
example in Section 13.15 depends on the geopy library (https://github.com/geopy/
geopy) to translate locations into latitude and longitude coordinates—known as geocod-
ing—so we can place markers on a map. The library supports dozens of geocoding web
services, many of which have free or lite tiers. In Section 13.15, we’ll use the Open-
MapQuest geocoding service (discussed next). To install geopy, execute:

conda install -c conda-forge geopy

OpenMapQuest Geocoding API
In Section 13.15, we’ll use the OpenMapQuest Geocoding API to convert locations, such
as Boston, MA, into their latitudes and longitudes, such as 42.3602534 and -71.0582912,
for plotting on maps. OpenMapQuest currently allows 15,000 transactions per month on
their free tier. To use the service, first sign up at

https://developer.mapquest.com/

Once logged in, go to

https://developer.mapquest.com/user/me/apps

and click Create a New Key, fill in the App Name field with a name of your choosing, leave
the Callback URL empty and click Create App to create an API key. Next, click your app’s
name to see your consumer key. In the keys.py file, store the consumer key by replacing
YourKeyHere in the line

mapquest_key = 'YourKeyHere'

You’ll import keys.py to access this key.

Folium Library and Leaflet.js JavaScript Mapping Library
For the maps in Section 13.15, we’ll use the folium library

https://github.com/python-visualization/folium

which uses the popular Leaflet.js JavaScript mapping library to display maps. The maps
folium produces are saved as HTML files that you can view in your web browser. To
install folium, execute the following command:

pip install folium

Maps from OpenStreetMap.org
By default, Leaflet.js uses open-source maps from OpenStreetMap.org. These maps are
copyrighted by the OpenStreetMap.org contributors. To use these maps11, they require
the following copyright notice:

Map data © OpenStreetMap contributors

and they state:

11. https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ. Accessed August
25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 525 Sunday, September 4, 2022 4:37 PM

526 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

You must make it clear that the data is available under the Open Database
License. This can be achieved by providing a “License” or “Terms” link which
links to www.openstreetmap.org/copyright or www.opendatacommons.org/
licenses/odbl.

deep-translator Library
People tweet in many languages. We’ll use the deep-translator library12—which sup-
ports several translation services—to translate foreign-language tweets into English via
Google Translate. To install deep-translator, use:

pip install -U deep_translator

Self Check
1 (Fill-In) The geopy library enables you to translate locations into latitude and longi-
tude coordinates, known as , so you can plot locations on a map.
Answer: geocoding

2 (Fill-In) The OpenMapQuest Geocoding API converts locations, like Boston, MA,
into their and for plotting on maps.
Answer: latitudes, longitudes.

13.7 Authenticating with Twitter Via Tweepy to Access
Twitter v2 APIs
In the next several sections, you’ll invoke various cloud-based Twitter APIs via Tweepy.
Here you’ll use Tweepy to authenticate with Twitter and create a Tweepy Client object,
your gateway to using the Twitter v2 APIs over the Internet. In subsequent sections, you’ll
work with various Twitter APIs by invoking methods on your Client object.

Before you invoke any Twitter API, you must use your bearer token to authenticate
with Twitter.13 Launch IPython from the ch13 examples folder, then import tweepy and
the keys.py file you modified earlier in this chapter. You can import any .py file as a mod-
ule by using the file’s name without the .py extension in an import statement:

When you import keys.py as a module, you can individually access each variable defined
in that file as keys.variable_name.

Creating a Client Object
To use the Twitter v2 APIs, you must first create a Tweepy Client object, initializing it
with your bearer token:

12. https://deep-translator.readthedocs.io/en/latest/. Accessed August 25, 2022.
13. For apps that enable users to log into their Twitter accounts, manage them, post tweets, read tweets

from other users, search for tweets, etc., you’ll need user authentication rather than app authentica-
tion. For details on user authentication with Tweepy, see https://docs.tweepy.org/en/latest/
authentication.html. Accessed August 25, 2022.

In [1]: import tweepy

In [2]: import keys

In [3]: client = tweepy.Client(bearer_token=keys.bearer_token,
 ...: wait_on_rate_limit=True)

PyCDS_13_DataMiningTwitter.fm Page 526 Sunday, September 4, 2022 4:37 PM

13.8 Getting Information About a Twitter Account 527

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

We specified two arguments in this call to the Client constructor:

• bearer_token is the bearer token you acquired in Section 13.4 to authenticate
with Twitter.

• wait_on_rate_limit=True tells Tweepy that each time it reaches a given API
method’s rate limit it should wait for the rate-limit interval to expire. This ensures
that you do not violate Twitter’s rate-limit restrictions. For most Twitter APIs,
the rate-limit interval is 15 minutes.

You’re now ready to interact with Twitter via Tweepy. The code examples in the next
several sections are presented as a continuous IPython session, so the authorization process
you went through here need not be repeated.

Self Check
1 (Fill-In) An object of the Tweepy module’s class is your gateway to using
the Twitter v2 APIs over the Internet.
Answer: Client.

2 (True/False) Passing the keyword argument wait_on_rate_limit=True as an argu-
ment when initializing a tweepy.Client tells Tweepy that each time it reaches a given API
method’s rate limit, it should wait for the rate-limit interval to expire, ensuring that you
do not violate Twitter’s rate-limit restrictions.
Answer: True.

13.8 Getting Information About a Twitter Account
After authenticating with Twitter, you can use the Tweepy Client object’s get_user
method to get a tweepy.Response object containing information about a user’s Twitter
account. Let’s get information about NASA’s @NASA Twitter account:

The get_user method with the username keyword argument calls the Twitter API’s

/2/users/by/username/:username

method,14 which returns JSON data that Tweepy converts into a tweepy.Response
object. We’ll say more about this object momentarily.

Twitter returns the account’s ID number, name and user name by default. Twitter
API methods that return user account information enable you to request additional user
account fields. In Tweepy, you specify these fields via the user_fields keyword argu-
ment. Here we requested the account’s description and public_metrics, which we’ll
discuss momentarily. The complete list of user fields can be viewed at:

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/
object-model/user

Each Twitter method has a rate limit. For example, you can call Twitter’s

/2/users/by/username/:username

In [4]: nasa = client.get_user(username='NASA',
 ...: user_fields=['description', 'public_metrics'])

14. https://developer.twitter.com/en/docs/twitter-api/users/lookup/api-reference/get-

users-by-username-username. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 527 Sunday, September 4, 2022 4:37 PM

528 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

method up to 900 times every 15 minutes to get information on specific user accounts. As
we mention other methods, we’ll provide a footnote with a link to each method’s docu-
mentation in which you can view its limits.

tweepy.Response Object
Each tweepy.Response object contains four fields:

• data—contains the data returned by Twitter.

• includes—contains additional data specified via a given method’s expansions
parameter.

• errors—if errors occur, this contains information about the errors.

• meta—additional method-specific information that can be useful in processing
the response.

Getting a User’s Basic Account Information
Let’s display some information about the @NASA account. When a Twitter method returns
a user JSON object, the Tweepy Response object’s data attribute is a named tuple con-
taining the default fields id, name and username:

• The id is the account’s unique ID number.

• The name is the name associated with the user’s account.

• The username is the user’s Twitter handle (@NASA). For NASA, both have the
same value, but name often represents a user’s actual name. To protect a user’s pri-
vacy, the name and username values are sometimes created names.

We also requested the additional user_fields description and public_metrics, so
these, too, are in the Response object’s data attribute. The description contains the text
description provided in the user’s profile. We discuss the public_metrics below.

Getting the Number of Accounts That Follow This Account and the Number
of Accounts This Account Follows
A user account’s public_metrics attribute is a dictionary containing the keys:

• 'followers_count'—the number of users who follow this account,

• 'following_count'—the number of users that this account follows,

• 'tweet_count'—the total number of tweets (and retweets) sent by this user, and

• 'listed_count'—the total number of Twitter lists that include this user.

In [5]: nasa.data.id
Out[5]: 11348282

In [6]: nasa.data.name
Out[6]: 'NASA'

In [7]: nasa.data.username
Out[7]: 'NASA'

In [8]: nasa.data.description
Out[8]: "There's space for everybody."

PyCDS_13_DataMiningTwitter.fm Page 528 Sunday, September 4, 2022 4:37 PM

13.9 Getting More than One Page of Results 529

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Here we show just the 'followers_count' and 'following_count':

Getting Your Own Account’s Information
You can also use the properties in this section on your account. To do so, call the Tweepy
Client object’s get_me method, as in:

me = client.get_me()

This returns a User object for the account you used to authenticate with Twitter in the
preceding section. As with get_users, you may specify arguments to request additional
information about the account.

Self Check
1 (Fill-In) After authenticating with Twitter, you can use the Tweepy Client object’s

 method to get a tweepy.Response object containing information about a user’s
Twitter account.
Answer: get_user.

2 (IPython Session) Use the client object to get information about the NASAMars
account, then display its ID, name, username, description and number of followers.
Answer:

13.9 Intro to Tweepy Paginators: Getting More than
One Page of Results
When invoking Twitter API methods, you often receive as results collections of objects,
such as tweets sent by a particular user, tweets matching specified search criteria or tweets
in a user’s timeline (consisting of tweets sent by a user and by other accounts that user fol-
lows).

In [9]: nasa.data.public_metrics['followers_count']
Out[9]: 61260251

In [10]: nasa.data.public_metrics['following_count']
Out[10]: 181

In [11]: nasa_mars = client.get_user(username='NASAMars',
 ...: user_fields=['description', 'public_metrics'])

In [12]: nasa_mars.data.id
Out[12]: 15165502

In [13]: nasa_mars.data.name
Out[13]: 'NASA Mars'

In [14]: nasa_mars.data.username
Out[14]: 'NASAMars'

In [15]: nasa_mars.data.description
Out[15]: 'NASA’s official Twitter account for all things Mars. Join us as
we explore the Red Planet!'

In [16]: nasa_mars.data.public_metrics['followers_count']
Out[16]: 1225717

PyCDS_13_DataMiningTwitter.fm Page 529 Sunday, September 4, 2022 4:37 PM

530 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Each Twitter API method’s documentation discusses the maximum number of items
the method can return per call—this is known as a page of results. When you request more
results than a given method can return, Twitter’s JSON response contains information to
help you manage requests for the additional pages. Tweepy’s Paginator handles these
details for you. A Paginator15 invokes a specified Client method and checks whether
there is another page of results. If so, the Paginator automatically calls the method again
to get those results. This continues (subject to the method’s rate limits) until there are no
more results to process. If you configure the Client object to wait when rate limits are
reached (as we did), the Paginator will adhere to the rate limits and wait as needed
between calls. The following subsections discuss Paginator fundamentals.

13.9.1 Determining an Account’s Followers
Let’s use a Tweepy Paginator to invoke the Client object’s get_users_followers
method, which calls the Twitter API’s

/2/users/:id/followers

method16 to obtain an account’s followers. Twitter returns these in groups of 100 by
default, but you can request up to 1000 at a time. For demonstration purposes, we’ll grab
10 of NASA’s followers, five at a time, so we receive two pages of results. Let’s begin by
creating a list in which we’ll store the followers’ Twitter user names:

Creating a Paginator
Next, let’s create a Paginator object that will call the get_users_followers method for
NASA’s account:

You initialize the Paginator with the name of the method to call and any arguments that
should be passed to that method:

• client.get_users_followers indicates that the Paginator will call the client
object’s get_users_followers method,

• nasa.data.id is the ID number (obtained in Section 13.8) of the NASA Twitter
account for which we’ll get followers, and

• max_results=5 specifies that each page of results should contain five followers.

Getting Results
Now, we can use the Paginator to get some followers. The following for statement iter-
ates through the results of the expression paginator.flatten(10). The Paginator’s
flatten method initiates the call to client.get_users_followers. The argument 10
indicates the total number of results to obtain. We iterate through these and add each fol-
lower’s username to the followers list:

15. https://docs.tweepy.org/en/latest/v2_pagination.html. Accessed August 25, 2022.
16. https://developer.twitter.com/en/docs/twitter-api/users/follows/api-reference/

get-users-id-followers. Accessed August 25, 2022.

In [17]: followers = []

In [18]: paginator = tweepy.Paginator(
 ...: client.get_users_followers, nasa.data.id, max_results=5)

PyCDS_13_DataMiningTwitter.fm Page 530 Sunday, September 4, 2022 4:37 PM

13.9 Getting More than One Page of Results 531

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Let’s display the followers in ascending order:

We call the built-in sorted function with the second argument specifying how the ele-
ments of followers are sorted. In this case, the lambda converts every user name to low-
ercase letters so we can perform a case-insensitive sort.

Automatic Paging
If the number of results requested is more than one call to get_users_followers returns,
the flatten method automatically “pages” through the results by making multiple calls to
client.get_users_followers. We specified in snippet [18] that each page contains five
results, so snippet [19] will get two pages of results. Method flatten makes the two pages
appear to be a sequence of 10 results.

If you do not specify an argument to the flatten method, the Paginator attempts to
get all of the account’s followers. This could take significant time due to Twitter’s rate lim-
its. Twitter’s

/2/users/:id/followers

method17 can return a maximum of 1000 followers at a time, and Twitter allows up to 15
calls every 15 minutes. Thus, you can only get 15,000 followers every 15 minutes using
Twitter’s free APIs. Recall that we configured the Client object to automatically wait
when it hits a rate limit. So if you try to get all followers and an account has more than
15,000, Tweepy will automatically pause for 15 minutes after every 15,000 followers and
display a message. You saw in snippet [9] that, at the time of this writing, NASA had over
61 million followers. At 60,000 followers per hour, it would take over 40 days to get all of
NASA’s followers.

Note that for this example, we could have simply called get_users_followers since
we’re getting only a small number of followers. We used a Paginator here to show how
you’ll typically call Client methods. In subsequent examples, we’ll call Client methods
directly to get just a few results, rather than using Paginators.

Self Check
1 (Fill-In) Each Twitter API method’s documentation discusses the maximum number
of items the method can return in one call—this is known as a(n) of results.
Answer: page.

2 (IPython Session) Use a Paginator to get and display 10 followers of the NASAMars
account. Use the NASAMars account’s ID number that you obtained earlier.

In [19]: for follower in paginator.flatten(limit=10):
 ...: followers.append(follower.username)
 ...:

In [20]: print('Followers:',
 ...: ' '.join(sorted(followers, key=lambda s: s.lower())))
 ...:
Followers: ARNOLDO81766323 CusumanoNolan desthiafh egrh50686195 epic90for
F1lukesuperfan GreenTolland misra_arsh RpKumbhar98 virendrarathv17

17. https://developer.twitter.com/en/docs/twitter-api/users/follows/api-reference/

get-users-id-followers. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 531 Sunday, September 4, 2022 4:37 PM

532 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Answer:

13.9.2 Determining Whom an Account Follows
The Client object’s get_users_following method calls the Twitter API’s

/2/users/:id/following

method18 to get a list of Twitter users an account follows. Twitter returns these in groups
of 100 by default, but you can request up to 1000 at a time. You can call this method up
to 15 times every 15 minutes. Let’s get 10 accounts that NASA follows:

13.9.3 Getting a User’s Recent Tweets
The Client method get_users_tweets returns a tweepy.Response containing tweets
from a specified user. The method calls the Twitter API’s

/2/users/:id/tweets

method19, which returns the most recent 10 tweets but can between 5 and 100 at a time.
This method can return only an account’s 3200 most recent tweets. Applications using
this method may call it up to 1500 times every 15 minutes.

The data attribute of the tweepy.Response returned by get_users_tweets contains
a list of the returned tweets. Each object in that list has a data attribute, which is a dictio-
nary containing the keys 'id' and 'text' for each tweet’s unique ID and its text. Let’s dis-
play five tweets from the @NASA account using its ID number that we obtained previously:

In [21]: nasa_mars_followers = []

In [22]: nasa_mars_followers_paginator = tweepy.Paginator(
 ...: client.get_users_followers, nasa_mars.data.id, max_results=5)

In [23]: for follower in nasa_mars_followers_paginator.flatten(limit=10):
 ...: nasa_mars_followers.append(follower.username)
 ...:

In [24]: print(' '.join(nasa_mars_followers))
tochengiri emin27142536 mp_anush 02indrani BryanSouza200 GaryDartagnan
Melody1Sure LngPhm15447025 LawDontExist KallumUK

18. https://developer.twitter.com/en/docs/twitter-api/users/follows/api-reference/

get-users-id-following. Accessed August 25, 2022.

In [25]: following = []

In [26]: paginator = tweepy.Paginator(
 ...: client.get_users_following, nasa.data.id, max_results=5)

In [27]: for user_followed in paginator.flatten(limit=10):
 ...: following.append(user_followed.username)
 ...:

In [28]: print('Following:',
 ...: ' '.join(sorted(following, key=lambda s: s.lower())))
Following: Astro_Ayers astro_berrios astro_deniz astro_matthias Astro_Pam
astro_watkins JimFree NASA_Gateway NASASpaceSci v_wyche

19. https://developer.twitter.com/en/docs/twitter-api/tweets/timelines/api-reference/

get-users-id-tweets. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 532 Sunday, September 4, 2022 4:37 PM

13.9 Getting More than One Page of Results 533

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

In snippet [29], we called the get_users_tweets method directly and used the key-
word argument max_results to specify the number of tweets to retrieve. If you wish to get
more than the maximum number of tweets per call (100), then you should use a Pagina-
tor to call get_users_tweets, as shown in Section 13.9.

Grabbing Recent Tweets from Your Own Timeline
You can call the Client method get_home_timeline, as in:

client.get_home_timeline()

to get tweets from your home timeline20—that is, your tweets and retweets, as well as
tweets and retweets from the Twitter users you follow. This method calls Twitter’s

/2/users/:id/timelines/reverse_chronological

method21 and returns up to a maximum of 100 tweets by default. For more than that, you
should use a Tweepy Paginator to call get_home_timeline.

Self Check
1 (Fill-In) You can call the Client method get_home_timeline to get tweets from your
home timeline, that is, your tweets and tweets from .
Answer: the Twitter users you follow.

2 (IPython Session) Get and display five tweets from the NASAMars account.

In [29]: nasa_tweets = client.get_users_tweets(
 ...: id=nasa.data.id, max_results=5)

In [30]: for tweet in nasa_tweets.data:
 ...: print(f"NASA: {tweet.data['text']}\n")
 ...:
NASA: Come find out how college students are getting involved in
developing and testing technologies for future Moon missions.

Join the livestream on @Twitch today at 4pm ET (2000 UTC) and chat with
teams from this year's @NASAArtemis Student Challenges: https://t.co/
6EOhJoy2TD https://t.co/0F1RFnu6qD

NASA: #Artemis I is "go" for launch! Now that today's flight readiness
review has concluded, NASA managers provide an update on the Moon
mission, scheduled to lift off at 8:33am ET (12:33 UTC), Monday, Aug. 29.
More info: https://t.co/KOrOCmSRu4 https://t.co/apV6wrEYCu

NASA: RT @NASAArtemis: Update: Today's flight readiness review briefing
on the #Artemis I mission is now scheduled for 8pm ET (00:00 UTC).
Watch:…

NASA: @enrosadire @NASAArtemis The many moods of @NASAMoon. ?

NASA: @profdanthomas It’s always fun to draw the Moon! Thank you for
sharing, Oscar!

20. Specifically for the account you used to authenticate with Twitter.
21. https://developer.twitter.com/en/docs/twitter-api/tweets/timelines/api-reference/

get-users-id-reverse-chronological. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 533 Sunday, September 4, 2022 4:37 PM

534 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Answer:

13.10 Searching Recent Tweets; Intro to Twitter v2 API
Search Operators
The Tweepy Client method search_recent_tweets returns tweets from the last seven
days that match a query string you provide. The method calls Twitter’s

/2/tweets/search/recent

method22, which returns a minimum of 10 tweets at a time (the default) but can return
up to 100 (specified with keyword argument max_results). Use a Paginator if you need
more results than can be returned by one search_recent_tweets call. It’s possible that
fewer than 10 tweets will match the specified query string.

Utility Function print_tweets from tweetutilities.py
For this section, we created a utility function print_tweets (in tweetutilities.py) that
receives the results of a call to Client method search_recent_tweets and displays for each
tweet the tweeter’s username and the tweet’s text. If the tweet is not in English and the
tweet.lang is not 'und' (undefined), we also translate the tweet to English using the deep-
translator library’s GoogleTranslator class, which tweetutilities.py imports.23 The
GoogleTranslator object’s translate function receives ISO 639-1 language codes24 for a

In [31]: nasa_mars_tweets = client.get_users_tweets(
 ...: id=nasa_mars.data.id, max_results=5)

In [32]: for tweet in nasa_mars_tweets.data:
 ...: print(f"NASAMars: {tweet.data['text']}\n")
 ...:
NASAMars: We see Martian dust devils (whirlwinds) from the ground, as in
this shot from the Opportunity rover in 2016, left. From space, we can
see the tracks they leave behind, as in this view of dunes from Mars
Reconnaissance Orbiter in 2009, right. More: https://t.co/kd1BNEDBUD
https://t.co/RxeKTI5Fv5

NASAMars: Meanwhile on Mars: flight #30! ? https://t.co/kyTesrPdzf

NASAMars: RT @NASAhistory: Viking I, the 1st spacecraft to successfully
land on Mars, launched #OTD in 1975. It's twin, Viking 2, was launched 3
week…

NASAMars: RT @NASAJPL: This #NationalAviationDay, we’re celebrating our
own flight pioneer: #MarsHelicopter! This mighty rotorcraft took to the
skies…

NASAMars: RT @NASAPersevere: Been checking on some small debris in my
drill system. I’m designed for a dirty environment, but it doesn't hurt
to be c…

22. https://developer.twitter.com/en/docs/twitter-api/tweets/search/api-reference/

get-tweets-search-recent. Accessed August, 25, 2022.
23. https://github.com/nidhaloff/deep-translator. Accessed August, 25, 2022.
24. https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes. Accessed August, 27, 2022.

PyCDS_13_DataMiningTwitter.fm Page 534 Sunday, September 4, 2022 4:37 PM

13.10 Searching Recent Tweets; Intro to Twitter v2 API Search Operators 535

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

source and a target language—source='auto' enables Google to auto-detect the source
language. To use print_tweets, import it from tweetutilities.py:

Just the print_tweets function’s definition from that file is shown below—we’ll explain
the tweets parameter’s contents (used in line 8) momentarily:

Searching for Specific Words
Let’s call the Client object’s search_recent_tweets method to search for 10 recent
tweets about the Webb Space Telescope. The method returns a Response object in which
the data attribute contains a list of matching tweets:

The query keyword argument specifies the query string containing your search crite-
ria. Twitter returns only each tweet’s unique ID and text by default. In this example, we’d
like to show who sent the tweet and check the tweet’s language so we can decide whether
to translate it. The language ('lang') is an additional field you may request via the list you
provide in the tweet_fields parameter. You can view the complete list of tweet fields at:

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/
object-model/tweet

As we mentioned in Section 13.5, the Twitter v2 API also supports expansions, which
enable you to request related metadata objects to be included in a method’s response. The
expansion 'author_id' indicates that for each tweet, Twitter also should return the user
JSON object for the user who sent the tweet. As discussed in Section 13.8, user JSON
object contains the user’s id, name and username by default. If you need more user fields,
you can pass a list to the user_fields parameter shown previously. Tweepy places the
expansion objects in the Response’s includes dictionary attribute. For the 'author_id'
expansion, a list of tweet authors is stored with the key 'users'. Each tweet has a corre-
sponding user in this list. So the following expression in line 8 of print_tweets:

zip(tweets.data, tweets.includes['users'])

In [33]: from tweetutilities import print_tweets

1 def print_tweets(tweets):
2 # translator to autodetect source language and return English
3 translator = GoogleTranslator(source='auto', target='en')
4
5 """For each tweet in tweets, display the username of the sender
6 and tweet text. If the language is not English, translate the text
7 with the deep-translator library's GoogleTranslator."""
8 for tweet, user in zip(tweets.data, tweets.includes['users']):
9 print(f'{user.username}:', end=' ')

10
11 if 'en' in tweet.lang:
12 print(f'{tweet.text}\n')
13 elif 'und' not in tweet.lang: # translate to English first
14 print(f'\n ORIGINAL: {tweet.text}')
15 print(f'TRANSLATED: {translator.translate(tweet.text)}\n')

In [34]: tweets = client.search_recent_tweets(
 ...: query='Webb Space Telescope',
 ...: expansions=['author_id'], tweet_fields=['lang'])
 ...:

PyCDS_13_DataMiningTwitter.fm Page 535 Sunday, September 4, 2022 4:37 PM

536 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

creates tuples in which the first element represents a tweet (from the list tweets.data) and
the second element represents the user object for the sender (from the list stored in the
tweets.includes dictionary’s 'users' key). Snippet [35] displays the tweets—we
showed just two of the results to save space:

Note that one of these tweets was a retweet, as indicated by RT at the beginning of the
tweet. We’ll show how to check whether a tweet is a retweet and ignore it later.

Searching with Twitter v2 API Search Operators
You can use various Twitter search operators25 in your query strings to refine your search
results. Your query-string length is limited by your developer account type:

• For Essentials and Elevated accounts, query strings may be up to 512 characters.

• For Academic Research accounts, query strings may be up to 1024 characters.

Also, some operators are available only for Elevated accounts or higher.
The Twitter v2 operators are categorized as standalone or conjunction-required:

• Standalone operators can be used alone or combined with other operators in a
query string.

• Conjunction-required operators must be combined with at least one standalone
operator in a query string. Otherwise, Twitter says conjunction-required opera-
tors would match “an extremely high volume of Tweets.”

The following table shows several Twitter search operators, as well as logical AND,
logical OR and logical negation capabilities. As with Python code, parentheses can be used
to group query-string subexpressions. All matching is performed using case-insensitive
searching, so searching for Python can also return matches for python.

In [35]: print_tweets(tweets)
zeeejayee: RT @SpaceTelescope: After years of preparation and
anticipation, exoplanet researchers are ecstatic! The James Webb Space
Telescope has cap…

John11110111101: RT @uhd2020: Zoom Into the Southern Ring Nebula Captured
by NASA James Webb Space Telescope https://t.co/CWR8LOwN5d

25. https://developer.twitter.com/en/docs/twitter-api/tweets/search/integrate/build-

a-query. Accessed August 25, 2022.

Example Finds tweets containing

python twitter Finds tweets containing python AND twitter. Spaces between query
string terms and operators are implicitly treated as logical AND opera-
tions. In this query string, python and twitter are terms to search for—
these are considered standalone operators.

python OR twitter Finds tweets containing python OR twitter OR both. The logical OR oper-
ator is case-sensitive.

planets -mars - (minus sign)—Finds tweets containing planets but not mars. The
minus is the logical NOT operator and can be applied to any operator.

PyCDS_13_DataMiningTwitter.fm Page 536 Sunday, September 4, 2022 4:37 PM

13.10 Searching Recent Tweets; Intro to Twitter v2 API Search Operators 537

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Operator Documentation and Tutorial
You can view all the operators with examples of each at

https://developer.twitter.com/en/docs/twitter-api/tweets/search/
integrate/build-a-query

Check out Twitter’s tutorial on building high-quality Twitter v2 API query strings to
obtain the targeted results your app requires:

https://developer.twitter.com/en/docs/tutorials/building-high-
quality-filters

Twitter also provides an online tool to help you build Twitter v2 API query strings:

https://developer.twitter.com/apitools/query?query=

Searching for Tweets From NASA Containing Links
Let’s use the from and has:links operators to get recent tweets from NASA that contain
hyperlinks:

Searching for a Hashtag
Tweets often contain hashtags that begin with # to indicate something of importance, like
a trending topic. Let’s get tweets containing the hashtag #metaverse—we showed just two
results to save space:

An emoji You can use emojis as standalone operators in a query string to find tweets
containing those emojis.

has:hashtags,
has:links,
has:mentions,
has:media, …

You can combine these conjunction-required operators with standalone
operators to find tweets containing hashtags, links, mentions of other
users, media and more.

is:retweet,
is:reply,
is:verified, …

You can combine these conjunction-required operators with standalone
operators to determine whether a tweet is a retweet, a tweet is a reply, the
sender is a verified Twitter account and more.

place:"New York City" Finds tweets that were sent near "New York City". Multiword places
should be quoted as shown here.

from:NASA Finds tweets from the account @NASA.

to:NASA Finds tweets to the account @NASA. You also may use to:id, where id is
the unique ID number of the user account.

Example (Cont.) Finds tweets containing

In [36]: tweets = client.search_recent_tweets(
 ...: query='from:NASA has:links',
 ...: expansions=['author_id'], tweet_fields=['lang'])

In [37]: print_tweets(tweets)
NASA: Come find out how college students are getting involved in
developing and testing technologies for future Moon missions.

Join the livestream on @Twitch today at 4pm ET (2000 UTC) and chat with
teams from this year's @NASAArtemis Student Challenges: https://t.co/
6EOhJoy2TD https://t.co/0F1RFnu6qD

PyCDS_13_DataMiningTwitter.fm Page 537 Sunday, September 4, 2022 4:37 PM

538 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Self Check
1 (Fill-In) The Tweepy Client method returns tweets that match a query string.
Answer: search_recent_tweets.

2 (True/False) If you plan to request more results than can be returned by one call to
search_recent_tweets, you should call the method directly until you have all the results
you need.
Answer: False. If you plan to request more results than can be returned by one call to
search_recent_tweets, you should use a Paginator object to manage the repeated calls
to search_recent_tweets.

3 (IPython Session) Search for recent tweets from the NASA account containing the word
'astronaut'.
Answer:

13.11 Spotting Trending Topics
[Note: At the time of this writing, Twitter had not yet migrated their Trending Topics
APIs from v1.1 to v2. The v1.1 APIs used in this section are accessible only to Twitter
Developer accounts with “Elevated” access and higher.]

In [38]: tweets = client.search_recent_tweets(query='#metaverse',
 ...: expansions=['author_id'], tweet_fields=['lang'])
 ...:

In [39]: print_tweets(tweets)
adamrbses: @shush_club @Safelaunch1 @BabylonsNFT ?BINECD CORP MEGA
GIVEAWAY?
Hello everyone, binecd will like to inform and engage the general public
on it ongoing investment plan and giveaway projects, kindly follow the
link and make sure to participate.
https://t.co/eNmxhZt9WZ
#CryptoGiveaway #Metaverse #BTC #Giveaway

CsmicCouncil: Wen Metaverse??

As a new development with a wealth of unrealized potential, the hype
around the #Metaverse is expected.

However, we will focus (for now) on phygital methods that will forge
external and cultural connections, creating a community where Cosmics can
thrive.

In [40]: tweets = client.search_recent_tweets(
 ...: query='from:nasa astronaut',
 ...: expansions=['author_id'], tweet_fields=['lang'])
 ...:

In [41]: print_tweets(tweets)
NASA: LIVE: Astronaut Frank Rubio discusses his upcoming mission to the
@Space_Station, scheduled to launch Sept. 21 from Kazakhstan. https://
t.co/xr1tWHMjmQ

PyCDS_13_DataMiningTwitter.fm Page 538 Sunday, September 4, 2022 4:37 PM

13.11 Spotting Trending Topics 539

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

If a topic “goes viral,” thousands or even millions of people could tweet about it. Twitter
calls these trending topics and maintains lists of them worldwide. Via the Twitter v1.1
Trends API, you can get lists of locations with trending topics and lists of the top 50 trend-
ing topics for each location. To use the v1.1 APIs in Tweepy, initialize an object of class
OAuth2BearerHandler with your bearer token, then create an API object that uses the
OAuth2BearerHandler object to authenticate with Twitter:

13.11.1 Places with Trending Topics
The Tweepy API’s available_trends method calls the Twitter API’s trends/avail-
able26 method to get a list of all locations for which Twitter has trending topics. Method
available_trends returns a list of dictionaries representing these locations. When we exe-
cuted this code, there were 467 locations with trending topics:

The dictionary in each list element returned by available_trends has various infor-
mation, including the location’s name and woeid (discussed below):

The Twitter Trends API’s trends/place method (discussed momentarily) uses
Yahoo! Where on Earth IDs (WOEIDs) to look up trending topics. The WOEID 1 rep-
resents worldwide, and other locations have unique WOEID values greater than 1. We’ll
use WOEID values in the following two subsections to get worldwide trending topics and
trending topics for a specific city. The following table shows WOEID values for several
landmarks, cities, states and continents. Although these are valid WOEIDs, Twitter does
not necessarily have trending topics for all these locations.

In [42]: auth = tweepy.OAuth2BearerHandler(keys.bearer_token)

In [43]: api = tweepy.API(auth=auth, wait_on_rate_limit=True)

26. https://developer.twitter.com/en/docs/twitter-api/v1/trends/locations-with-trend-

ing-topics/api-reference/get-trends-available. Accessed August, 25, 2022.

In [44]: available_trends = api.available_trends()

In [45]: len(available_trends)
Out[45]: 467

In [46]: available_trends[0]
Out[46]:
{'name': 'Worldwide',
 'placeType': {'code': 19, 'name': 'Supername'},
 'url': 'http://where.yahooapis.com/v1/place/1',
 'parentid': 0,
 'country': '',
 'woeid': 1,
 'countryCode': None}

In [47]: available_trends[1]
Out[47]:
{'name': 'Winnipeg',
 'placeType': {'code': 7, 'name': 'Town'},
 'url': 'http://where.yahooapis.com/v1/place/2972',
 'parentid': 23424775,
 'country': 'Canada',
 'woeid': 2972,
 'countryCode': 'CA'}

PyCDS_13_DataMiningTwitter.fm Page 539 Sunday, September 4, 2022 4:37 PM

540 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

You also can search for locations close to a location that you specify with latitude and
longitude values. To do so, call the Tweepy API’s closest_trends method, which invokes
the Twitter API’s trends/closest method.27

Self Check
1 (Fill-In) If a topic “goes viral,” you could have thousands or even millions of people
tweeting about that topic at once. Twitter refers to these as topics.
Answer: trending.

2 (True/False) The Twitter Trends API’s trends/place method uses Yahoo! Where on
Earth IDs (WOEIDs) to look up trending topics. The WOEID 1 represents worldwide.
Answer: True.

13.11.2 Getting a List of Trending Topics
The Tweepy API’s get_place_trends method calls the Twitter Trends API’s trends/
place method28 to get the top 50 trending topics for the location with the specified
WOEID. You can get the WOEIDs from the woeid attribute in each dictionary returned
by the available_trends or closest_trends methods discussed in the previous section,
or you can find a location’s Yahoo! Where on Earth ID (WOEID) by searching for a city/
town, state, country, address, zip code or landmark at

http://www.woeidlookup.com

You also can look up WOEID’s programmatically using Yahoo!’s web services via Python
libraries like woeid29:

https://github.com/Ray-SunR/woeid

Worldwide Trending Topics
Let’s get today’s worldwide trending topics (your results will differ):

Method get_place_trends returns a one-element list containing a dictionary in which
the 'trends' key refers to a list of dictionaries representing each trend:

Place WOEID Place WOEID

Statue of Liberty 23617050 Iguazu Falls 468785

Los Angeles, CA 2442047 United States 23424977

Washington, D.C. 2514815 North America 24865672

Paris, France 615702 Europe 24865675

27. https://developer.twitter.com/en/docs/twitter-api/v1/trends/locations-with-trend-

ing-topics/api-reference/get-trends-closest. Accessed August, 25, 2022.
28. https://developer.twitter.com/en/docs/twitter-api/v1/trends/trends-for-location/

api-reference/get-trends-place.Accessed August, 25, 2022.
29. You’ll need a Yahoo! API key as described in the woeid module’s documentation.

In [48]: world_trends = api.get_place_trends(id=1)

In [49]: trends_list = world_trends[0]['trends']

PyCDS_13_DataMiningTwitter.fm Page 540 Sunday, September 4, 2022 4:37 PM

13.11 Spotting Trending Topics 541

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Each trend dictionary has name, url, promoted_content (indicating the tweet is an adver-
tisement), query and tweet_volume keys (shown below). The following trend is a hashtag:

You’ll often see a mix of hashtags and phrases in many languages in the trending topics.
For trends with more than 10,000 tweets, the tweet_volume is the number of tweets;

otherwise, it’s None. Let’s use a list comprehension to filter the list so that it contains only
trends with more than 10,000 tweets:

Next, let’s sort the trends in descending order by tweet_volume:

Now, let’s display the names of the top five trending topics:

New York City Trending Topics
Now, let’s get the top five trending topics for New York City (WOEID 2459115). The
following code performs the same tasks as above, but for the different WOEID:

In [50]: trends_list[0]
Out[50]:
{'name': '#SOUMUN',
 'url': 'http://twitter.com/search?q=%23SOUMUN',
 'promoted_content': None,
 'query': '%23SOUMUN',
 'tweet_volume': 121659}

In [51]: trends_list = [t for t in trends_list if t['tweet_volume']]

In [52]: from operator import itemgetter

In [53]: trends_list.sort(key=itemgetter('tweet_volume'), reverse=True)

In [54]: for trend in trends_list[:5]:
 ...: print(trend['name'])
 ...:
DONBELLE PHIHNOMENALConcert
Southampton
#SOUMUN
KANAWUT
#LetsGULFtoJAPAN

In [55]: nyc_trends = api.get_place_trends(id=2459115)

In [56]: nyc_list = nyc_trends[0]['trends']

In [57]: nyc_list = [t for t in nyc_list if t['tweet_volume']]

In [58]: nyc_list.sort(key=itemgetter('tweet_volume'), reverse=True)

In [59]: for trend in nyc_list[:5]:
 ...: print(trend['name'])
 ...:
#MUFC
Chelsea
Ronaldo
Nigeria
Southampton

PyCDS_13_DataMiningTwitter.fm Page 541 Sunday, September 4, 2022 4:37 PM

542 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Self Check
1 (Fill-In) You also can look up WOEIDs programmatically using Yahoo!’s web ser-
vices via Python libraries like .
Answer: woeid.

2 (True/False) The statement todays_trends = api.trends_place(id=1) gets today’s
U. S. trending topics.
Answer: False. Actually, it gets today’s worldwide trending topics.

3 (IPython Session) Display the top 3 trending topics today in the United States.
Answer:

13.11.3 Create a Word Cloud from Trending Topics
In the NLP chapter, we used the WordCloud library to create word clouds. Let’s use it
here to visualize New York City’s trending topics with more than 10,000 tweets each.
First, let’s create a dictionary of key–value pairs consisting of the trending topic names and
tweet_volumes:

Next, let’s create a WordCloud from the topics dictionary’s key–value pairs, then out-
put the word cloud to the image file TrendingTwitter.png (shown after the code). The
argument prefer_horizontal=0.5 suggests that 50% of the words should be horizontal,
though the software may ignore that to fit the content:

In [60]: us_trends = api.get_place_trends(id='23424977')

In [61]: us_list = us_trends[0]['trends']

In [62]: us_list = [t for t in us_list if t['tweet_volume']]

In [63]: us_list.sort(key=itemgetter('tweet_volume'), reverse=True)

In [64]: for trend in us_list[:3]:
 ...: print(trend['name'])
 ...:
Ronaldo
Southampton
#SOUMUN

In [65]: topics = {}

In [66]: for trend in nyc_list:
 ...: topics[trend['name']] = trend['tweet_volume']
 ...:

In [67]: from wordcloud import WordCloud

In [68]: wordcloud = WordCloud(width=1600, height=900,
 ...: prefer_horizontal=0.5, min_font_size=10, colormap='prism',
 ...: background_color='white')
 ...:

In [69]: wordcloud = wordcloud.fit_words(topics)

In [70]: wordcloud = wordcloud.to_file('TrendingTwitter.png')

PyCDS_13_DataMiningTwitter.fm Page 542 Sunday, September 4, 2022 4:37 PM

13.12 Cleaning/Preprocessing Tweets for Analysis 543

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

The resulting word cloud is shown below—yours will differ based on the trending
topics the day you run the code:

Self Check
1 (IPython Session) Create a word cloud using the us_list list from the previous sec-
tion’s Self Check.
Answer:

13.12 Cleaning/Preprocessing Tweets for Analysis
Data cleaning is one of the most common tasks that data scientists perform. Depending
on how you intend to process tweets, you’ll need to use natural language processing to nor-
malize them by performing various data cleaning tasks in the following table. Many of
these can be performed using the libraries introduced in the “Natural Language Processing
(NLP)” chapter:

In [69]: topics = {}

In [70]: for trend in us_list:
 ...: topics[trend['name']] = trend['tweet_volume']
 ...:

In [71]: wordcloud = wordcloud.fit_words(topics)

In [72]: wordcloud = wordcloud.to_file('USTrendingTwitter.png')

PyCDS_13_DataMiningTwitter.fm Page 543 Sunday, September 4, 2022 4:37 PM

544 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

tweet-preprocessor Library and TextBlob Utility Functions
In this section, we’ll use the tweet-preprocessor library

https://github.com/s/preprocessor

to perform some basic tweet cleaning. It can automatically remove:

• URLs,

• @-mentions (like @nasa),

• hashtags (like #mars),

• Twitter reserved words (like RT for retweet and FAV for favorite, which is similar
to a “like” on other social networks),

• emojis (all or just smileys) and

• numbers

or any combination of these. The following table shows the module’s constants represent-
ing each option:

Installing tweet-preprocessor
To install tweet-preprocessor, open your Anaconda Prompt (Windows), Terminal
(macOS/Linux) or shell (Linux), then issue the following command:

pip install tweet-preprocessor

Windows users might need to run the Anaconda Prompt as an administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

Tweet cleaning tasks

Converting all text to the same case
Removing the # symbol from hashtags
Removing @-mentions
Removing duplicates
Removing excess whitespace
Removing hashtags
Removing punctuation

Removing stop words
Removing RT (retweet) and FAV (favorite)
Removing URLs
Stemming
Lemmatization
Tokenization

Option Option constant

@-Mentions (e.g., @nasa) OPT.MENTION

Emoji OPT.EMOJI

Hashtag (e.g., #mars) OPT.HASHTAG

Number OPT.NUMBER

Reserved Words (RT and FAV) OPT.RESERVED

Smiley OPT.SMILEY

URL OPT.URL

PyCDS_13_DataMiningTwitter.fm Page 544 Sunday, September 4, 2022 4:37 PM

13.13 Twitter Streaming API 545

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Cleaning a Tweet
Let’s do some basic tweet cleaning that we’ll use in a later example in this chapter. The
tweet-preprocessor library’s module name is preprocessor. Its documentation recom-
mends that you import the module as follows:

To set the cleaning options you’d like to use, call the module’s set_options function.
In this case, we’d like to remove URLs and Twitter reserved words:

Now let’s clean a sample tweet containing a reserved word (RT) and a URL:

Self Check
1 (True/False) The tweet-preprocessor library can automatically remove URLs,
hashtags (like #mars), @-mentions (like @NASA), Twitter reserved words (like, RT for retweet
and FAV for favorite, which is similar to a “like” on other social networks), emojis (all or
just smileys) and numbers, or any combination of these.
Answer: True.

13.13 Twitter Streaming API
Your app can receive tweets as they occur in real-time. Based on the Twitter Statistics page
at InternetLiveStats.com,30 we calculated that there are over 10,000 tweets per second
and approximately 880 million tweets per day.31 Most developer accounts are subject to a
tweet cap32—a maximum number of tweets per month that an account’s Twitter apps can
acquire using the Twitter APIs. The tweet caps are 500,000 for Essentials accounts and
two million for Elevated accounts—academic research and paid accounts can get more.

This section uses a class definition and an IPython session to process streaming tweets.
Note that the code for receiving a tweet stream requires creating a custom class that inher-
its from another class. These topics are covered in Chapter 10.

13.13.1 Creating a Subclass of StreamingClient
The Streaming API returns tweets as they happen. Rather than connecting to Twitter on
each method call, a stream uses a persistent connection to push (that is, send) tweets to
your app. The rate at which those tweets arrive varies tremendously based on your search
criteria, which you’ll specify with Tweepy StreamRule objects. The more popular a topic
is, the more likely tweets will arrive quickly. Twitter uses all the StreamRules you set to
find tweets, including StreamRules you’ve set previously. So you may want to delete exist-
ing StreamRules before creating new ones, as you’ll see in Section 13.13.2.

In [1]: import preprocessor as p

In [2]: p.set_options(p.OPT.URL, p.OPT.RESERVED)

In [3]: tweet_text = 'RT A sample retweet with a URL https://nasa.gov'

In [4]: p.clean(tweet_text)
Out[4]: 'A sample retweet with a URL'

30. http://www.internetlivestats.com/twitter-statistics/. Accessed August 25, 2022.
31. As of August 2022.
32. https://developer.twitter.com/en/docs/twitter-api/tweet-caps. Accessed August 25, 2022.

PyCDS_13_DataMiningTwitter.fm Page 545 Sunday, September 4, 2022 4:37 PM

546 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

You create a subclass of Tweepy’s StreamingClient class to process the tweet stream.
Tweepy calls the methods on an object of this class as it receives each new tweet (or other
message, such as an error) from Twitter. For example,

• on_connect(self) is called when your app successfully connects to the Twitter
stream—here, you can place statements that should execute only if your app’s
connection succeeds.

• on_respone(self, response) is called when a response arrives from the Twitter
stream—the response parameter is a Tweepy StreamResponse named tuple
object containing the tweet data, any expansion objects you requested and more.

StreamingClient already defines these and other "on_" methods. You override (redefine)
only the methods your app needs. For additional StreamingClient methods, see:

https://docs.tweepy.org/en/latest/streamingclient.html

Class TweetListener
Our StreamingClient subclass TweetListener is defined in tweetlistener.py. Line 6
indicates that class TweetListener is a subclass of tweepy.StreamingClient. This ensures
that our new class has class StreamingClient’s default method implementations.

Class TweetListener: __init__ Method
Class TweetListener’s __init__ method is called when you create a new TweetListener
object. The bearer_token parameter is used to authenticate with Twitter. The limit
parameter is the number of tweets to process—10 by default. We added this parameter so
you can control the number of tweets to receive. As you’ll see, we terminate the stream when
that limit is reached. Line 11 creates an instance variable to track the number of tweets pro-
cessed so far, and line 12 creates a constant to store the limit. Line 15 creates a Google-
Translator object for translating tweets into English. If you’re not familiar with __init__
and super() from previous chapters, line 17 passes the bearer_token to the superclass’s
__init__, which authenticates with Twitter. We also set wait_on_rate_limit=True to
ensure that we do not violate the Twitter rate limits for our account type.

1 # tweetlistener.py
2 """StreamingClient subclass that processes tweets as they arrive."""
3 from deep_translator import GoogleTranslator
4 import tweepy
5
6 class TweetListener(tweepy.StreamingClient):
7 """Handles incoming Tweet stream."""
8

9 def __init__(self, bearer_token, limit=10):
10 """Create instance variables for tracking number of tweets."""
11 self.tweet_count = 0
12 self.TWEET_LIMIT = limit
13
14 # GoogleTranslator object for translating tweets to English
15 self.translator = GoogleTranslator(source='auto', target='en')
16
17 super().__init__(bearer_token, wait_on_rate_limit=True)
18

PyCDS_13_DataMiningTwitter.fm Page 546 Sunday, September 4, 2022 4:37 PM

13.13 Twitter Streaming API 547

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Class TweetListener: on_connect Method
Method on_connect is called when your app successfully connects to the Twitter stream.
We override the default implementation to display a “Connection successful” message.

Class TweetListener: on_response Method
Method on_response is called by Tweepy when each tweet arrives. This method’s second
parameter is a Tweepy StreamResponse named tuple object containing:

• data—the tweet’s attributes.

• includes—any requested expansion objects.

• errors—any errors that occurred.

• matching_rules—the specific StreamRules that the returned tweet matched.

As you’ll see, this example uses an expansion (Section 13.5) to include in the Stream-
Response the user JSON object for each tweet’s sender. Interestingly, Twitter also returns
user objects for accounts mentioned in the tweet’s text. Line 29 gets the sender’s username.
List element 0 of response.includes['users'] contains the tweet sender’s user object.
Subsequent elements would contain accounts mentioned in the tweet. Lines 30–32 dis-
play the tweet sender’s username, the tweet’s language (lang) and the tweet’s text. If the
language is not English ('en') and not undefined ('und'), lines 34–36 translate the tweet
to English and display it. Line 39 increments self.tweet_count. Lines 45–46 determine
whether to terminate streaming.

19 def on_connect(self):
20 """Called when your connection attempt is successful, enabling
21 you to perform appropriate application tasks at that point."""
22 print('Connection successful\n')
23

24 def on_response(self, response):
25 """Called when Twitter pushes a new tweet to you."""
26
27 try:
28 # get username of user who sent the tweet
29 username = response.includes['users'][0].username
30 print(f'Screen name: {username}')
31 print(f' Language: {response.data.lang}')
32 print(f' Tweet text: {response.data.text}')
33
34 if response.data.lang != 'en' and response.data.lang != 'und':
35 english = self.translator.translate(response.data.text)
36 print(f' Translated: {english}')
37
38 print()
39 self.tweet_count += 1
40 except Exception as e:
41 print(f'Exception occured: {e}')
42 self.disconnect()
43
44 # if TWEET_LIMIT is reached, terminate streaming
45 if self.tweet_count == self.TWEET_LIMIT:
46 self.disconnect()

PyCDS_13_DataMiningTwitter.fm Page 547 Sunday, September 4, 2022 4:37 PM

548 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

13.13.2 Initiating Stream Processing
Let’s use an IPython session to obtain tweets using a TweetListener object. First, import
Tweepy and the keys.py file:

Creating a TweetListener
The StreamingClient subclass TweetListener manages the connection to the Twitter
stream and receives and processes the tweets. Create a TweetListener object, initializing
it with your bearer token and the number of tweets you’d like to receive (3) before the
TweetListener terminates the connection:

Redirecting the Standard Error Stream to the Standard Output Stream
When you eventually call your StreamingClient subclass’s disconnect method to termi-
nate the tweet stream, the method sends the message

Stream connection closed by Twitter

to the standard error stream (sys.stderr), which is not synchronized with the standard
output stream. Sometimes, this causes the preceding message to be interspersed with other
messages that this app sends to the standard output stream. To prevent this, redirect the
standard error stream to the standard output stream:

Deleting Existing Stream Rules
When you initiate the tweet stream, Twitter uses all the StreamRules you’ve specified pre-
viously to filter the tweets it pushes to your app—that is, it sends you only tweets that
match the search criteria specified in the StreamRules. Twitter does not automatically
remove your StreamRules after you terminate the tweet stream. If your app filters the
tweet stream with different rules each time you run it, you should delete any existing
StreamRules before creating new ones. To do so:

1. Get the StreamRules by calling your StreamingClient’s get_rules method—
the Response’s data attribute contains a list of StreamRules:

2. Get the rule IDs—here, we use a list comprehension to create a list containing all
the existing rules’ IDs:

3. Call your StreamingClient’s delete_rules method, which receives a list of rule
IDs to delete. This method’s response contains a 'summary' dictionary with in-
formation about the number of deleted rules.

In [1]: import tweepy

In [2]: import keys

In [3]: from tweetlistener import TweetListener

In [4]: tweet_listener = TweetListener(
 ...: bearer_token=keys.bearer_token, limit=3)

In [5]: import sys

In [6]: sys.stderr = sys.stdout

In [7]: rules = tweet_listener.get_rules().data

In [8]: rule_ids = [rule.id for rule in rules]

PyCDS_13_DataMiningTwitter.fm Page 548 Sunday, September 4, 2022 4:37 PM

13.13 Twitter Streaming API 549

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Creating and Adding a Stream Rule
In this example, we’d like to filter the live tweet stream, looking for tweets about football.
To do so, create a StreamRule:

Next, call your StreamingClient’s add_rules method, passing the StreamRule (or a list
of StreamRules as an argument:

This method’s Response contains a 'summary' dictionary with information about the
StreamRule you just set and whether it was valid.

Starting the Tweet Stream
The Stream object’s filter method begins the streaming process. Here, we use the key-
word argument expansions to indicate that we’d like the response for each tweet to
include the sender’s user JSON object. The keyword argument tweet_fields indicates
that the tweet’s language should be included in the responses tweet JSON object:

The following output shows three streamed tweets:

In [9]: tweet_listener.delete_rules(rule_ids)
Out[9]: Response(data=None, includes={}, errors=[], meta={'sent': '2022-
08-23T23:50:51.138Z', 'summary': {'deleted': 1, 'not_deleted': 0}})

In [10]: filter_rule = tweepy.StreamRule('football')

In [11]: tweet_listener.add_rules(filter_rule)
Out[11]: Response(data=[StreamRule(value='football', tag=None,
id='1562225901483483137')], includes={}, errors=[], meta={'sent': '2022-
08-23T23:50:55.945Z', 'summary': {'created': 1, 'not_created': 0,
'valid': 1, 'invalid': 0}})

In [12]: tweet_listener.filter(
 ...: expansions=['author_id'], tweet_fields=['lang'])

Connection successful

Screen name: MikeRebello1
 Language: en
 Tweet text: Pilgrim Football live from camp fogarty https://t.co/
VT0X6RMJ3F

Screen name: ChazJ
 Language: en
 Tweet text: @blue_gwladys Pro Football players are assets the same as
the floodlights and the chairman's office chair. Everything has a price.
I think Spurs did us over re Richy but for 60M Chelsea US are madder than
Chelski were. Grab it. Two strikers and a #10 window closed.

Screen name: JamesCDolan92
 Language: en
 Tweet text: @EduardoHagn 9/10 be 2 massive signings to a already great
attack arteta building a really good team there and are playing some good
football things are looking up for arsenal fans so far

Stream connection closed by Twitter

PyCDS_13_DataMiningTwitter.fm Page 549 Sunday, September 4, 2022 4:37 PM

550 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Asynchronous vs. Synchronous Streams
Tweepy supports asynchronous tweet streams by creating a subclass of AsyncStreaming-
Client class. This allows your application to continue executing while your listener waits
to receive tweets. Asynchronous streams are convenient in GUI applications, so users can
continue interacting with other parts of the application while tweets arrive.

Self Check
1 (Fill-In) Rather than connecting to Twitter on each method call, a stream uses a per-
sistent connection to (that is, send) tweets to your app.
Answer: push.

2 (Fill-In) StreamingClient method returns any prior StreamRules you’ve
set for filtering streaming tweets.
Answer: get_rules.

3 (Fill-In) StreamingClient method specifies one or more StreamRules used
to search for tweets in the Twitter live stream.
Answer: add_rules.

13.14 Tweet Sentiment Analysis
In the NLP chapter, we demonstrated sentiment analysis on sentences. Many researchers
and companies perform sentiment analysis on tweets. For example, political researchers
might check tweet sentiment during election seasons to understand how people feel about
specific politicians and issues. Companies might check tweet sentiment to see what people
say about their products and competitors’ products.

Let’s use the techniques introduced in the preceding section to create a script (senti-
mentlistener.py) that checks the sentiment on a specific topic. The script will keep totals
of all the positive, neutral and negative tweets it processes and display the results.

The script receives two command-line arguments representing the topic of the tweets
you wish to receive and the number of tweets for which to check the sentiment. Only those
tweets that are not eliminated are counted. For viral topics, there are large numbers of
retweets, which we are not counting, so it could take some time to get the number of
tweets you specify. You can run the script from the ch13 folder as follows:

ipython sentimentlistener.py football 10

which produces output like the following. Positive tweets are preceded by a +, negative
tweets by a - and neutral tweets by a space:

 smfalk: 'What a difference a year makes' for Red Bank Regional football
program via @asburyparkpress

- MarieInSedona: @MollyJongFast His base is trapped in a USFL Fantasy
Football league. They are bored, disappointed and ready to trade.

 _ethannn: @Chace_THFC @DavidTa41816701 @paarsons @RobertAllen97 did
spurs create football chants?

+ wassimfcb23: Football is much more than a game

 zaimmzaidi: @90min_Football: Adama Traore is back!

PyCDS_13_DataMiningTwitter.fm Page 550 Sunday, September 4, 2022 4:37 PM

13.14 Tweet Sentiment Analysis 551

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Sentiment analysis is not a perfect process. Do you agree with these sentiment characteri-
zations? The script (sentimentlistener.py) is presented below. We focus only on the
new capabilities in this example.

Imports
Lines 4–8 import the keys.py file and the libraries used throughout the script:

Class SentimentListener: __init__ Method
In addition to the bearer_token for authenticating with Twitter, the __init__ method
receives three additional parameters:

• sentiment_dict—a dictionary in which we’ll keep track of the tweet sentiments,

• topic—the topic we’re searching for so we can ensure that it appears in the tweet
text and

• limit—the number of tweets to process (not including the ones we eliminate).

Each of these is stored in the current SentimentListener object (self).

- PhiloeEsq: 1 Euopa final, 3 UCL finals, lost 2 to Madrid. + 2
ridiculous 2nd place finishes in the league. That’s without putting into
context the style of football he implemented. Let’s behave like adults,
please.

+ x_hems: @BYUDFO: When I was 16 years old I wrote down my life goals…
One of them being to be on staff of a Top 25 NCAA Division I Football
Team.…

+ wocoblanco: @FootballMissess: Football fans are the best

+ NovieRohani: @Hector_Network: We’re Champion Partner of
#BorussiaDortmund! #BVB is one of the most iconic football clubs in the
world! Follow us for…

+ tsloan_17: It's about that time. On the call tomorrow for
@ProsperEaglesFB vs @IAR2_Football on @sportsgram. Kickoff at 7:00 from
Pennington Field. Pregame Show at 6:45. High School Football is back, and
this is as fun a matchup as you can draw up to open the season!

Stream connection closed by Twitter
Tweet sentiment for "football"
Positive: 5
 Neutral: 3
Negative: 2

1 # sentimentlisener.py
2 """Script that searches for tweets that match a search string
3 and tallies the number of positive, neutral and negative tweets."""
4 import keys
5 import preprocessor as p
6 import sys
7 from textblob import TextBlob
8 import tweepy
9

PyCDS_13_DataMiningTwitter.fm Page 551 Sunday, September 4, 2022 4:37 PM

552 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Method on_response
If the tweet is not a retweet (line 28):

• Line 29 gets and cleans the tweet’s text to remove URLs and Twitter reserved
words like FAV.

• Lines 32–33 skip the tweet if it does not have the topic in the tweet text.

• Lines 36–45 use a TextBlob to check the tweet’s sentiment and update the sen-
timent_dict accordingly.

• Line 48 gets the sender’s username from response.includes['users']—as
you’ll see when we start the streaming, we’ll use an expansion to include this user
object.

• Line 49 prints the tweet text preceded by + for positive sentiment, space for neu-
tral sentiment or - for negative sentiment.

• Line 51 increments the tweet_count, and lines 54–55 check whether the app
should disconnect from the tweet stream.

10 class SentimentListener(tweepy.StreamingClient):
11 """Handles incoming Tweet stream."""
12
13 def __init__(self, bearer_token, sentiment_dict, topic, limit=10):
14 """Configure the SentimentListener."""
15 self.sentiment_dict = sentiment_dict
16 self.tweet_count = 0
17 self.topic = topic
18 self.TWEET_LIMIT = limit
19
20 # set tweet-preprocessor to remove URLs/reserved words
21 p.set_options(p.OPT.URL, p.OPT.RESERVED)
22 super().__init__(bearer_token, wait_on_rate_limit=True)
23

24 def on_response(self, response):
25 """Called when Twitter pushes a new tweet to you."""
26
27 # if the tweet is not a retweet
28 if not response.data.text.startswith('RT'):
29 text = p.clean(response.data.text) # clean the tweet
30
31 # ignore tweet if the topic is not in the tweet text
32 if self.topic.lower() not in text.lower():
33 return
34
35 # update self.sentiment_dict with the polarity
36 blob = TextBlob(text)
37 if blob.sentiment.polarity > 0:
38 sentiment = '+'
39 self.sentiment_dict['positive'] += 1
40 elif blob.sentiment.polarity == 0:
41 sentiment = ' '
42 self.sentiment_dict['neutral'] += 1

PyCDS_13_DataMiningTwitter.fm Page 552 Sunday, September 4, 2022 4:37 PM

13.14 Tweet Sentiment Analysis 553

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Main Application
The main application is defined in the function main (lines 57–87; discussed after the fol-
lowing code), which is called by lines 90–91 when you execute the file as a script. So
sentimentlistener.py can be imported into IPython or other modules to use class Sen-
timentListener as we did with TweetListener in the previous section:

43 else:
44 sentiment = '-'
45 self.sentiment_dict['negative'] += 1
46
47 # display the tweet
48 username = response.includes['users'][0].username
49 print(f'{sentiment} {username}: {text}\n')
50
51 self.tweet_count += 1 # track number of tweets processed
52
53 # if TWEET_LIMIT is reached, terminate streaming
54 if self.tweet_count == self.TWEET_LIMIT:
55 self.disconnect()
56

57 def main():
58 # get search term and number of tweets
59 search_key = sys.argv[1]
60 limit = int(sys.argv[2]) # number of tweets to tally
61
62 # set up the sentiment dictionary
63 sentiment_dict = {'positive': 0, 'neutral': 0, 'negative': 0}
64
65 # create the StreamingClient subclass object
66 sentiment_listener = SentimentListener(keys.bearer_token,
67 sentiment_dict, search_key, limit)
68
69 # redirect sys.stderr to sys.stdout
70 sys.stderr = sys.stdout
71
72 # delete existing stream rules
73 rules = sentiment_listener.get_rules().data
74 rule_ids = [rule.id for rule in rules]
75 sentiment_listener.delete_rules(rule_ids)
76
77 # create stream rule
78 sentiment_listener.add_rules(
79 tweepy.StreamRule(f'{search_key} lang:en'))
80
81 # start filtering English tweets containing search_key
82 sentiment_listener.filter(expansions=['author_id'])
83
84 print(f'Tweet sentiment for "{search_key}"')
85 print('Positive:', sentiment_dict['positive'])
86 print(' Neutral:', sentiment_dict['neutral'])
87 print('Negative:', sentiment_dict['negative'])
88

PyCDS_13_DataMiningTwitter.fm Page 553 Sunday, September 4, 2022 4:37 PM

554 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

In main:

• Lines 59–60 get the command-line arguments.

• Line 63 creates the sentiment_dict dictionary that keeps track of the tweet sen-
timents.

• Lines 66–67 create the SentimentListener.

• Line 70 redirects the standard error stream to the standard output stream.

• Lines 73–75 delete any existing StreamRules.

• Lines 78–79 create a new StreamRule that searches for English (lang:en) tweets
that match the search_key.

• Line 82 starts the stream. The expansions parameter indicates that we’d like
Twitter to include the tweet sender’s user object in the response.

• Once the tweets have been received and processed, lines 84–87 display the senti-
ment report.

13.15 Geocoding and Mapping
In this section, we’ll collect streaming tweets, then plot the locations of those tweets. Most
tweets do not include latitude and longitude coordinates because Twitter disables this by
default for all users. Those who wish to include their precise location in tweets must enable
that feature. A large percentage of tweets include the user’s home location information.
However, even that is sometimes invalid, such as “Far Away” or a fictitious location from
a user’s favorite movie.

In this section, for simplicity, we’ll use the location stored in the Twitter account that
sent each tweet to plot that user’s location on an interactive map. The map will let you
zoom in and out and drag to move the map around so you can look at different areas
(known as panning). For each tweet, we’ll display a map marker that you can click to see
a pop-up containing the user’s screen name and tweet text.

We’ll ignore retweets and tweets that do not contain the search topic. For other
tweets, we’ll track the percentage for which the sender’s account contains location infor-
mation. When we get the latitude and longitude information for those locations, we’ll also
track the percentage of those tweets with invalid location data.

13.15.1 Getting and Mapping the Tweets
Let’s interactively develop the code that plots tweet locations. We’ll use utility functions
from our tweetutilities.py file and class LocationListener in locationlistener.py.
We’ll explain the utility functions and LocationListener details.

Collections Required By LocationListener
Our LocationListener class requires two collections:

• a list (tweets) to store the data from the tweets we collect, and

89 # call main if this file is executed as a script
90 if __name__ == '__main__':
91 main()

PyCDS_13_DataMiningTwitter.fm Page 554 Sunday, September 4, 2022 4:37 PM

13.15 Geocoding and Mapping 555

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

• a dictionary (counts) to track the total number of tweets we collect and the num-
ber that have location data:

Creating the LocationListener
For this example, the LocationListener will collect 50 tweets about 'football':

The LocationListener will use our utility function get_tweet_content (located in
tweetutilities.py; discussed in Section 13.15.2) to place in a dictionary the username,
tweet text and user location from each tweet.

Redirect sys.stderr to sys.stdout
As in the previous two examples, we redirect the standard error stream to the standard out-
put stream so the message "Stream connection closed by Twitter" that displays when
we disconnect from the tweet stream does not get interspersed with other text sent to the
standard output stream:

Delete Existing StreamRules
Once again, Twitter applies all the rules that you’ve set previously unless you delete them:

Create a StreamRule
In this example, we’ll get tweets in English (lang:en) about football:

In [1]: tweets = []

In [2]: counts = {'total_tweets': 0, 'locations': 0}

In [3]: import keys

In [4]: import tweepy

In [5]: from locationlistener import LocationListener

In [6]: location_listener = LocationListener(
 ...: keys.bearer_token, counts_dict=counts, tweets_list=tweets,
 ...: topic='football', limit=50)
 ...:

In [7]: import sys

In [8]: sys.stderr = sys.stdout

In [9]: rules = location_listener.get_rules().data

In [10]: rule_ids = [rule.id for rule in rules]

In [11]: location_listener.delete_rules(rule_ids)
Response(data=None, includes={}, errors=[], meta={'sent': '2022-08-
22T21:16:18.357Z', 'summary': {'deleted': 1, 'not_deleted': 0}})

In [12]: location_listener.add_rules(
 ...: tweepy.StreamRule('football lang:en'))
Response(data=[StreamRule(value='football lang:en', tag=None,
id='1561824608181010432')], includes={}, errors=[], meta={'sent': '2022-
08-22T21:16:19.955Z', 'summary': {'created': 1, 'not_created': 0,
'valid': 1, 'invalid': 0}})

PyCDS_13_DataMiningTwitter.fm Page 555 Sunday, September 4, 2022 4:37 PM

556 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Configure and Start the Stream of Tweets
Next, let’s start streaming the tweets:

The expansion 'author_id' gets information about the user who sent the tweet, including
the username. The user_fields argument specifies that the user information should
include the account’s 'location'. The tweet_fields argument specifies additional infor-
mation to include with each tweet—in this case, the tweet’s language.

Now, wait to receive the tweets. Though we do not show them here (to save space),
the LocationListener displays each tweet’s screen name and text so you can see them as
they arrive from the live stream. If you’re not receiving any (perhaps it is not football sea-
son), you might want to type Ctrl + C to terminate the previous snippet, delete the
StreamRule and set up a new one for a different topic.

Displaying the Location Statistics
When the next In [] prompt displays, we can check how many tweets we processed, how
many had locations and the percentage that had locations:

In this particular execution, 60.2% of the tweets contained location data.

Geocoding the Locations
Now, let’s use our get_geocodes utility function (from tweetutilities.py; discussed in
Section 13.15.2) to geocode the location of each tweet stored in the list of tweets:

Sometimes the OpenMapQuest geocoding service times out, meaning that it cannot
handle your request immediately, and you need to try again. In that case, our function
get_geocodes would display

OpenMapQuest service timed out. Waiting.

wait for a short time, then retry the geocoding request.
As you’ll soon see, for each tweet with a valid location, the get_geocodes function

adds the new keys 'latitude' and 'longitude' to that tweet’s dictionary in the tweets
list. For their values, the function uses the coordinates that OpenMapQuest returns. These
will be used to plot map markers on our interactive map.

In [13]: location_listener.filter(expansions=['author_id'],
 ...: user_fields=['location'], tweet_fields=['lang'])
 ...:

In [14]: counts['total_tweets']
Out[14]: 83

In [15]: counts['locations']
Out[15]: 50

In [16]: print(f'{counts["locations"] / counts["total_tweets"]:.1%}')
60.2%

In [17]: from tweetutilities import get_geocodes

In [18]: bad_locations = get_geocodes(tweets)
Getting coordinates for tweet locations...
OpenMapQuest service timed out. Waiting.
OpenMapQuest service timed out. Waiting.
Done geocoding

PyCDS_13_DataMiningTwitter.fm Page 556 Sunday, September 4, 2022 4:37 PM

13.15 Geocoding and Mapping 557

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

Displaying the Bad Location Statistics
When the next In [] prompt displays, we can check the percentage of tweets that had
invalid location data:

In this case, 9 of the 50 (18%) tweets we acquired for which the sender’s account con-
tained a location had invalid locations.

Cleaning the Data
Before we plot the tweet locations on a map, let’s use a pandas DataFrame to clean the data.
When you create a DataFrame from the tweets list, it will contain the value NaN for the
'latitude' and 'longitude' of any tweet that does not have a valid location. Since NaN
cannot be plotted on a map, let’s remove any rows containing NaN by calling the Data-
Frame’s dropna method:

Creating a Map with Folium
Next, let’s create a folium Map on which we’ll plot the tweet locations:

The location keyword argument specifies a sequence containing latitude and longitude
coordinates for the map’s center point. The values in this snippet are the geographic center
of the continental United States.33 In many places worldwide, the term 'football'
describes the sport we call soccer in the U.S., so some of the tweets we plot may be outside
the U.S. In this case, you will not see them initially when you open the map. You can zoom
using the + and - buttons at the map’s top-left, or you can dragging the map with the
mouse (that is, pan) to see anywhere in the world.

The zoom_start keyword argument specifies the map’s initial zoom level, lower val-
ues show more of the world, and higher values show less. On our system, 5 displays the
entire continental United States. The detect_retina keyword argument enables folium
to detect high-resolution screens. When it does, it requests higher-resolution maps from
OpenStreetMap.org and changes the zoom level accordingly.

Creating Popup Markers for the Tweet Locations
Next, we’ll create folium Popup objects containing each tweet’s text and add them to the
Map. To do so, let’s iterate through the DataFrame one row at a time. DataFrame method
itertuples creates a named tuple from each row. Each named tuple will contain proper-
ties corresponding to each DataFrame column:

In [19]: bad_locations
Out[19]: 9

In [20]: print(f'{bad_locations / counts["locations"]:.1%}')
18.0%

In [21]: import pandas as pd

In [22]: df = pd.DataFrame(tweets)

In [23]: df = df.dropna()

In [24]: import folium

In [25]: usmap = folium.Map(location=[39.8283, -98.5795],
 ...: tiles='Stamen Terrain', zoom_start=5, detect_retina=True)

33. https://bit.ly/CenterOfTheUS.

PyCDS_13_DataMiningTwitter.fm Page 557 Sunday, September 4, 2022 4:37 PM

558 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

First, we create a string (text) containing the user’s username and tweet text separated by
a colon and a space. This text will be displayed on the map in a popup if you click the
corresponding marker. The second statement creates a folium Popup to display the text.
The third statement creates a folium Marker, using a tuple to specify the Marker’s latitude
and longitude. The popup keyword argument associates the tweet’s Popup object with the
new Marker. Finally, the last statement calls the Marker’s add_to method to specify the
Map that will display the Marker.

Saving the Map
The last step is to call the Map’s save method to store the map in an HTML file, which
you can then double-click to open in your web browser:

The resulting map follows. The Marker positions on your map will differ:

Self Check
1 (Fill-In) The folium classes and enable you to mark locations on
a map and add text that displays when the user clicks a marked location.
Answer: Marker, Popup.

In [26]: for t in df.itertuples():
 ...: text = ': '.join([t.username, t.text])
 ...: popup = folium.Popup(text, parse_html=True)
 ...: marker = folium.Marker((t.latitude, t.longitude),
 ...: popup=popup)
 ...: marker.add_to(usmap)
 ...:

In [27]: usmap.save('tweet_map.html')

Map data © OpenStreetMap contributors.
The data is available under the Open Database License www.openstreetmap.org/copyright.

PyCDS_13_DataMiningTwitter.fm Page 558 Sunday, September 4, 2022 4:37 PM

13.15 Geocoding and Mapping 559

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

2 (Fill-In) Pandas DataFrame method creates an iterator for accessing the rows
of a DataFrame as named tuples.
Answer: itertuples.

13.15.2 Utility Functions in tweetutilities.py
Here we present the utility functions get_tweet_content and get_geocodes used in the
preceding section’s IPython session. In each case, the line numbers start from 1 for discus-
sion purposes. These are both defined in tweetutilities.py, which is included in the
ch13 examples folder.

get_tweet_content Utility Function
Function get_tweet_content receives a StreamResponse object containing a tweet’s data
and other fields we requested via the StreamingClient filter method’s keyword argu-
ments expansions, user_fields and tweet_fields. The function returns a dictionary
containing the tweet’s username (line 4), text (line 5) and location (line 6):

get_geocodes Utility Function
Function get_geocodes receives a list of dictionaries containing tweets and attempts to
geocode their user locations. If geocoding is successful for a given tweet’s user location, the
function adds the latitude and longitude to the corresponding tweet’s dictionary in
tweet_list. This code requires class OpenMapQuest from the geopy module, which
tweetutilities.py imports as follows:

from geopy import OpenMapQuest

1 def get_tweet_content(response):
2 """Return dictionary with data from tweet."""
3 fields = {}
4 fields['username'] = response.includes['users'][0].username
5 fields['text'] = response.data.text
6 fields['location'] = response.includes['users'][0].location
7
8 return fields

1 def get_geocodes(tweet_list):
2 """Get the latitude and longitude for each tweet's location.
3 Returns the number of tweets with invalid location data."""
4 print('Getting coordinates for tweet locations...')
5 geo = OpenMapQuest(api_key=keys.mapquest_key) # geocoder
6 bad_locations = 0
7
8 for tweet in tweet_list:
9 processed = False

10 delay = .1 # used if OpenMapQuest times out to delay next call
11 while not processed:
12 try: # get coordinates for tweet['location']
13 geo_location = geo.geocode(tweet['location'])
14 processed = True
15 except: # timed out, so wait before trying again
16 print('OpenMapQuest service timed out. Waiting.')
17 time.sleep(delay)
18 delay += .1

PyCDS_13_DataMiningTwitter.fm Page 559 Sunday, September 4, 2022 4:37 PM

560 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

The function operates as follows:

• Line 5 creates the OpenMapQuest object we’ll use to geocode locations. The
api_key keyword argument is loaded from the keys.py file you edited in
Section 13.6.

• Line 6 initializes bad_locations, which we use to keep track of the number of
invalid locations in the tweet objects we collected.

• In the loop, lines 9–18 attempt to geocode the current tweet’s location. As we
mentioned, the OpenMapQuest geocoding service will sometimes time out,
meaning it’s temporarily unavailable. This can happen if you make too many
requests too quickly. For this reason, the while loop continues executing as long
as processed is False. Each iteration of this loop calls the OpenMapQuest object’s
geocode method with the tweet’s user location as an argument. If successful, pro-
cessed is set to True, and the loop terminates. Otherwise, lines 16–18 display a
time-out message, tell the loop to wait for delay seconds and increase the delay
in case of another time-out. Line 17 calls the Python Standard Library time mod-
ule’s sleep method to pause the code execution.

• After the while loop terminates, lines 20–24 check whether location data was
returned and, if so, add it to the tweet’s dictionary. Otherwise, line 24 increments
the bad_locations counter.

• Finally, the function prints a message that it’s done geocoding and returns the
bad_locations value.

Self Check
1 (IPython Session) Use an OpenMapQuest geocoding object to get the latitude and
Longitude for Chicago, IL.
Answer:

19
20 if geo_location:
21 tweet['latitude'] = geo_location.latitude
22 tweet['longitude'] = geo_location.longitude
23 else:
24 bad_locations += 1 # tweet['location'] was invalid
25
26 print('Done geocoding')
27 return bad_locations

In [1]: import keys

In [2]: from geopy import OpenMapQuest

In [3]: geo = OpenMapQuest(api_key=keys.mapquest_key)

In [4]: geo.geocode('Chicago, IL')
Out[4]: Location(Chicago, Cook County, Illinois, United States of
America, (41.8755546, -87.6244212, 0.0))

PyCDS_13_DataMiningTwitter.fm Page 560 Sunday, September 4, 2022 4:37 PM

13.15 Geocoding and Mapping 561

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

13.15.3 Class LocationListener
Class LocationListener performs many of the same tasks we demonstrated in the previ-
ous streaming examples, so we’ll focus on just a few lines in this class:

Again, the __init__ method receives the bearer_token and the number of tweets to
process (limit). In this example, __init__ also receives a counts dictionary that we use
to keep track of the total number of tweets processed, a tweet_list in which we store the
dictionaries returned by the get_tweet_content utility function, and a string representing
the topic so we can confirm that its text is contained in the tweet text.

1 # locationlistener.py
2 """Receives tweets matching a search string and stores a list of
3 dictionaries containing each tweet's username/text/location."""
4 import tweepy
5 from tweetutilities import get_tweet_content
6
7 class LocationListener(tweepy.StreamingClient):
8 """Handles incoming Tweet stream to get location data."""
9

10 def __init__(self, bearer_token, counts_dict,
11 tweets_list, topic, limit=10):
12 """Configure the LocationListener."""
13 self.tweets_list = tweets_list
14 self.counts_dict = counts_dict
15 self.topic = topic
16 self.TWEET_LIMIT = limit
17 super().__init__(bearer_token, wait_on_rate_limit=True)
18
19 def on_response(self, response):
20 """Called when Twitter pushes a new tweet to you."""
21
22 # get each tweet's username, text and location
23 tweet_data = get_tweet_content(response)
24
25 # ignore retweets and tweets that do not contain the topic
26 if (tweet_data['text'].startswith('RT') or
27 self.topic.lower() not in tweet_data['text'].lower()):
28 return
29
30 self.counts_dict['total_tweets'] += 1 # it's an original tweet
31
32 # ignore tweets with no location
33 if not tweet_data.get('location'):
34 return
35
36 self.counts_dict['locations'] += 1 # user account has location
37 self.tweets_list.append(tweet_data) # store the tweet
38 print(f"{tweet_data['username']}: {tweet_data['text']}\n")
39
40 # if TWEET_LIMIT is reached, terminate streaming
41 if self.counts_dict['locations'] == self.TWEET_LIMIT:
42 self.disconnect()

PyCDS_13_DataMiningTwitter.fm Page 561 Sunday, September 4, 2022 4:37 PM

562 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

In method on_response:

• Line 23 calls get_tweet_content to get each tweet’s screen name, text and loca-
tion.

• Lines 26–28 ignore the tweet if it is a retweet or if the text does not include the
topic we’re searching for. We’ll use only original tweets containing the search
string.

• Line 30 adds 1 to the value of the 'total_tweets' key in the counts dictionary
to track the number of original tweets we process.

• Lines 33–334 ignore tweets that have no location data.

• Line 36 adds 1 to the value of the counts dictionary’s 'locations' key to indi-
cate that we found a tweet with a location.

• Line 37 appends the tweet_data dictionary to the tweets_list.

• Line 38 displays the tweet’s screen name and tweet text so you can see that the
app is making progress.

• Lines 41–42 check whether the TWEET_LIMIT has been reached, and if so, discon-
nect from the stream.

13.16 Storing Tweets
Marketers, researchers and others frequently store tweets they receive from the Streaming
API. For analysis, you’ll commonly store tweets in:

• CSV files—A file format that we introduced in the “Files and Exceptions” chap-
ter.

• pandas DataFrames in memory—CSV files can be loaded easily into DataFrames
for cleaning and manipulation.

• SQL databases—Such as MySQL, a free and open source relational database
management system (RDBMS).

• NoSQL databases—Twitter returns tweets as JSON documents, so the natural
way to store them is in a NoSQL JSON document database, such as MongoDB.
Tweepy generally hides the JSON from the developer. If you’d like to manipulate
the JSON directly, use the techniques we present in the “Big Data: Hadoop,
Spark, NoSQL and IoT Databases” chapter, where we’ll look at the PyMongo
library.

If you store tweets, Twitter requires you to delete any data for which you receive a deletion
message. For deletion rules, see

https://developer.twitter.com/en/developer-terms/agreement-and-
policy

13.17 Twitter and Time Series
A time series is a sequence of values with timestamps. Some examples are daily closing stock
prices, daily high temperatures at a given location, monthly U.S. job-creation numbers,

PyCDS_13_DataMiningTwitter.fm Page 562 Sunday, September 4, 2022 4:37 PM

13.18 Wrap-Up 563

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

quarterly earnings for a given company and more. Tweets are natural for time-series analysis
because they’re time stamped. In the “Machine Learning” chapter, we’ll use a technique
called simple linear regression to make predictions with time series. We’ll take another look
at time series in the “Deep Learning” chapter when we study recurrent neural networks.

13.18 Wrap-Up
In this chapter, we explored data mining Twitter, perhaps the most open and accessible of
all the social media sites, and one of the most commonly used big-data sources. You cre-
ated a Twitter developer account and connected to Twitter using your account credentials.
We discussed Twitter’s rate limits and the importance of following their rules.

We showed that the Twitter APIs return responses in JSON format. We used
Tweepy—one of the most widely used Twitter API clients—to authenticate with Twitter
and access the Twitter v2 APIs. We saw that tweets returned by the Twitter APIs contain
default attributes and that we could use the Twitter v2 API’s expansions and fields to
request additional metadata. We determined an account’s followers and whom an account
follows, and looked at a user’s recent tweets.

We used Tweepy Paginators to conveniently request multiple pages of results from
various Twitter APIs. We searched for past tweets that met specified criteria. We tapped
into the flow of live tweets as they happened with a subclass of Tweepy’s StreamingClient
class. We used the Twitter v1.1 Trends API to determine trending topics for various loca-
tions and created a word cloud from trending topics.

We cleaned and preprocessed tweets to prepare them for analysis and performed sen-
timent analysis on tweets. We used the folium library to create a map of tweet locations
and interacted with it to see the tweets at particular locations. We enumerated common
ways to store tweets and noted that tweets are a natural form of time series data. The next
chapter presents IBM Watson and its cognitive computing capabilities.

Exercises
13.1 (Percentage of English Tweets) Twitter is truly an international social network. Use
the Twitter search API to look at 10,000 tweets. Look at each tweet’s lang property.
Count and display the number of tweets in each language.

13.2 (Percentage of Retweets) Look at 10,000 tweets and determine the percentage of
tweets that begin with Twitter’s reserved word RT (for retweet).

13.3 (Percentage of Tweets Over 140 Characters) Twitter originally allowed tweets con-
taining up to 140 characters, but that limit was expanded to 280. Look at 10,000 tweets
and determine what percentage of them have more than 140 characters.

13.4 (Basic Account Information) Get the ID, name, username and description of a
Twitter account of interest to you.

13.5 (User Tweets) Get the last 10 tweets from an account of interest to you.

13.6 (Sentiment Analysis with Emojis) When searching for tweets, you can include Emo-
jis to search for tweets containing them. Research how to include a smiley emoji and a sad
emoji in your query strings. Then, perform searches for 10 positive and 10 negative tweets,
and use TextBlob sentiment analysis to confirm that each is positive or negative.

PyCDS_13_DataMiningTwitter.fm Page 563 Sunday, September 4, 2022 4:37 PM

564 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

13.7 (Requesting Tweet Metadata) You’ve already seen that a tweet returned by the
Twitter v2 API contains only the tweet’s unique ID number and its text. Look at all the
Twitter v2 API’s Data Dictionary documentation at

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/
introduction

to see what other fields are available for tweets. Study the geo attribute, then write a script
that searches for tweets about 'football' that have geo data—you can use the has:geo
query-string operator. For each tweet you receive, display its sender’s username, the tweet
text and the string representation of its geo attribute.

13.8 (Trends Bar Chart Using Pandas) Use the pandas plotting you learned in the
“Natural Language Processing (NLP)” chapter to create a bar chart showing the tweet
counts for Twitter’s trending topics in a city of your choice. Note: The Twitter v1.1 APIs
used in this exercise require an “Elevated” developer account or higher.

13.9 (Trending Topics Word Cloud) Use the Twitter Trends API to determine the lo-
cations for which Twitter has trending topics. Pick one of the locations and display its
trending-topics list. Note: The Twitter v1.1 APIs used in this exercise require an “Ele-
vated” developer account or higher.

13.10 (Tweet Mapping Modification) In this chapter’s tweet mapping example
(Section 13.15), we used the tweet sender’s account location for simplicity. Another level
of location is to check whether the tweet object has geo data (see Exercise 13.7) then use
the coordinates attribute of that geo data to access the latitude and longitude informa-
tion. Update Section 13.15’s code to look only at tweets that have geo data with coordi-
nates and use those coordinates to plot the tweet location on the map. Each map marker
should have a pop-up that displays the tweet sender’s username and the tweet’s text. You
might need to look through many tweets before you have enough information to make the
map worthwhile. Count the number of tweets you find and divide by the total number of
tweets you received to determine the percentage of tweets that included latitude and lon-
gitude information.

13.11 (Project: Twitter Place Objects) Investigate the place objects in the Twitter v2 API

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/
object-model/place

For tweets with geo data (see Exercises 13.7 and 13.10), expand their place objects. Dis-
play with each tweet the location name and country.

13.12 (Project: Heat Maps with Folium) In this chapter, you used the folium library to
create an interactive map showing tweet locations. Investigate creating heat maps with fo-
lium. Build a folium heat map showing the tweeting activity on a given subject throughout
the United States.

13.13 (Project: Live Translating the Flow of Tweets to English) Twitter is a global network.
Use Twitter and the language translation services you learned in the “Natural Language
Processing (NLP)” chapter to data mine tweets for a Spanish-speaking city. In particular,
get the trending topics list, then stream 10 tweets on that city’s top trending topic. Use the
deep_translator library to translate the tweets to English. Note: The Twitter v1.1 APIs
used in this exercise require an “Elevated” developer account or higher.

PyCDS_13_DataMiningTwitter.fm Page 564 Sunday, September 4, 2022 4:37 PM

 Exercises 565

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

13.14 (Project: Tweet Cleaner/Preprocessor) Section 13.12 discussed cleaning and pre-
processing tweets and demonstrated basic cleaning with the tweet-preprocessor library.
Use the search API to get 100 tweets on a topic of your choice. Preprocess the tweets using
all of tweet-preprocessor’s features. Then, investigate and use TextBlob’s lowerstrip util-
ity function to remove all punctuation and convert the text to lowercase letters. Display
the original and cleaned version of each tweet.

13.15 (Project: Data Mining Facebook) Now that you’re familiar with data mining Twit-
ter, research data mining Facebook and implement several examples like those here in this
chapter. Develop some examples of data mining with capabilities unique to Facebook.

13.16 (Project: Data Mining LinkedIn) Now that you’re familiar with data mining Twit-
ter, research data mining LinkedIn and implement several examples like those here in this
chapter. Develop some examples of data mining with capabilities unique to the LinkedIn
social network, especially those for professional people.

13.17 (Project: Predicting the Stock Market with Twitter) Many articles and research pa-
pers have been published on predicting the stock market with Twitter. Some of the ap-
proaches are mathematical. Choose a few public companies listed on the major stock
exchanges. Use sentiment analysis with tweets mentioning these companies. Based on the
strength of the sentiment values, determine what recommendations you would have made
for buying and selling the securities of these companies. Would these trades have been
profitable? If you’re successful with stocks, you may want to apply a similar approach to
the bond and commodities markets.

13.18 (Project: Predicting Movie Revenues) Research “Using Twitter to Predict How
Well New Movies Will Do at the Box Office.” Try to do this only with the techniques
you’ve learned so far in this book. You may want to refine your effort with techniques
you’ll learn in the forthcoming “Machine Learning” and “Deep Learning” chapters. You
can use similar techniques to predict the success of stage plays, TV programs and products
of all kinds. The quality of these kinds of predictions will surely improve with time. Even-
tually, it’s reasonable to expect that the product design process will be influenced by what
is learned from years of prediction efforts.

13.19 Project: Generating the Social Graph) Because you can look at whom a Twitter ac-
count follows and who follows that account, you can build “social graphs” showing the re-
lationships among Twitter accounts. Study the NetworkX Python package. Write a script
that uses NetworkX to draw the social graph of a small “sub-community” on Twitter.

13.20 (Project: Using Twitter to Predict Elections) Research online “Predicting Elections
with Twitter.” Develop and test your approach on local, statewide and/or national elec-
tions. Try refining your approach after you study the “Machine Learning” and “Deep
Learning” chapters.

13.21 (Project: Using Twitter to Find Job Opportunities) Many companies encourage
their employees to tweet regularly about ongoing development efforts and job opportuni-
ties. Analyze the tweet streams of a possibly large number of companies in your field to
determine if the specific projects they’re doing interest you.

13.22 (Project: Using Twitter to Examine Tweets By Congressional District) Investigate
the site govtrack.us, which includes the statement, “You are encouraged to reuse any ma-
terial on this site.” Analyze the trending topics in key cities in several congressional districts

PyCDS_13_DataMiningTwitter.fm Page 565 Sunday, September 4, 2022 4:37 PM

566 Data Mining Twitter

© Copyright 2022 by Pearson Education, Inc. All Rights Reserved. You may not repost this file without express written consent.

of interest to you. Try to determine from the tweets the relative percentages of Democrats,
Republicans and Independents in each district. Research the term “gerrymandering,”
which is often used in a negative context, to see how politicians have used changes in these
percentages over time for political advantage. Find instances where gerrymandering has
been used in a positive context. Note: The Twitter v1.1 APIs used in this exercise require
an “Elevated” developer account or higher.

13.23 (Project: Accessing the YouTube API) In this chapter, you used web services to ac-
cess Twitter through its APIs. The hugely popular YouTube website serves up billions of
videos per day. Look for Python libraries that conveniently access the YouTube APIs, then
use them to integrate YouTube videos into one of your Twitter applications. You might,
for example, display YouTube videos for trending topics. Note: The Twitter v1.1 APIs
used in this exercise require an “Elevated” developer account or higher.

13.24 (Project: Tracking Natural Disasters with Twitter and Spatial Data) Research spa-
tial data,34 then use Twitter and spatial data to implement a system for tracking natural
disasters like hurricanes, earthquakes and tornadoes.

13.25 (Project: Tweet Normalization—Expanding Common Abbreviations) Search for
common social media abbreviations and expansions. Add expanding these abbreviations
to your tweet preprocessing script. Find tools that do these expansions. Some of the tools
are likely to be domain specific.

13.26 (Project: Tweet Normalization—Shortening “Stretched Words”) Shorten
“stretched words” like “sooooooo” to “so.” Make a list of stretched words commonly used
in social media.

13.27 (Project: Sentiment Analysis of Streaming Tweets) Stream tweets during an event
and note how sentiment changes throughout the event.

13.28 (Project: Finding Positive and Negative Sentiment Words) There are many free
and open source sentiment datasets online, such as IMDB (the Internet Movie Database)
and others. Many have labeled descriptions of movies, airline services, etc., with sentiment
tags, such as positive, negative and neutral. Analyze one or more of these datasets. Find the
most common words used in the positive sentiment descriptions and the most common
words in the negative sentiment descriptions. Then, search through tweets looking for
these positive and negative words. Based on the matches, decide whether the tweets have
positive or negative sentiment. Compare your sentiment results to what TextBlob returns
for each tweet.

13.29 (For the Entrepreneur) Research Twitter business applications and check out
https://business.twitter.com. Develop a Twitter-based business application.

13.30 (Uber Visualization Video) In this chapter, we visualized tweets on a map. To
learn more about visualizing live data, watch the following visualization video to see how
Uber is using visualization to optimize their business:

https://www.youtube.com/watch?v=nLy3OQYsXWA

34. https://www.safe.com/what-is/spatial-data/. Accessed August 27, 2022.

PyCDS_13_DataMiningTwitter.fm Page 566 Sunday, September 4, 2022 4:37 PM

Symbols
'author_id' expansion

(Twitter v2 API) 556

@-mentions 544, 545

A
Academic Research Twitter

developer account level 520,

536

add_rules method of a
StreamingClient
(Tweepy) 549

add_to method of class
Marker 558

API 539

API class (Tweepy) 539

available_trends
method 539

closest_trends method

540

trends_place method

540

API key (Twitter) 521

API key secret (Twitter) 521

app for managing Twitter
credentials 521

app rate limit (Twitter API)

519

asynchronous tweet stream

550

AsyncStreamingClient
class (Tweepy) 550

available_trends method
of class API 539

B
bearer token 526, 539

bearer token (Twitter) 521

C
case-insensitive sort 531

cleaning data 557

Client class (Tweepy) 526

get_me method 529

get_user method 527

get_users_followers
method 530, 530

get_users_following
method 532

get_users_tweets
method 532, 532, 533

home_timeline method

533

search method 534

closest_trends method of
class API 540

cloud 518

conjunction-required Twit-
ter v2 API search operator

536

constructor 527

Consumer API keys (Twit-
ter) 521

continental United States 557

coordinates (map) 525

credentials for using the
Twitter API 521

D
data cleaning 543, 557

data mining 516, 517

Twitter 516

DataFrame (pandas) 557

dropna method 557

itertuples method 557

deep-translator library 526

delete_rules method of a
StreamingClient
(Tweepy) 548

description property of a
User (Twitter) 528

disruptive technology 517

dropna method of class
DataFrame 557

E
Elevated Twitter developer

account level 520, 536, 538,

545, 564, 566

endpoint
of a web service 518

Essentials Twitter developer
account level 520, 536, 545

expansions in a Twitter v2
API method call 523

expansions in the Twitter v2
API 535

F
fields in a Twitter v2 API

method call 523

filter method of class
Stream 549

Folium mapping library 525

Map class 557

Marker class 558

Popup class 558

G
geocode a location 556

geocode method of class
OpenMapQuest (geopy) 560

geocoding 525, 559

Index

OpenMapQuest geocod-
ing service 525

geographic center of the con-
tinental United States 557

geopy library 525

OpenMapQuest class 559,

560

get_me method of class Cli-
ent 529

get_rules method of a
StreamingClient
(Tweepy) 548

get_user method of class
Client 527

get_users_followers
method of class Client

530, 530

get_users_following
method of class Client 532

get_users_tweets method
of class Client 532, 533

get_users_tweets method
of class Client (Tweepy)

532

H
hashtags 537

home timeline 533

home_timeline method of
class Client 533

I
IBM Watson 518

id property of a User (Twit-
ter) 528

install Tweepy 524, 544

items method
of Cursor 530

itertuples method of class
DataFrame 557

J
JavaScript Object Notation

(JSON) 522

JSON (JavaScript Object
Notation) 522

object 522

L
lambda expression 531

latitude 525

Leaflet.js JavaScript mapping
library 525

LinkedIn 517

longitude 525

lowerstrip function of the
module textblob.utils

565

M
map

coordinates 525

marker 554

panning 554

zoom 554

Map class (Folium) 557

save method 558

Marker class (folium) 558

add_to method 558

Meta (formerly called Face-
book) 517

metadata
tweet 522, 524

microblogging 517

modules
tweepy 526

MongoDB document data-
base 562

N
name property of a User

(Twitter) 528

named tuple 557

natural language processing
(NLP) 543

NoSQL database 562

O
OAuth 2.0 522

OAuth2BearerHandler 539

OAuth2BearerHandler class
(Tweepy) 539

on_connect method of class
StreamingClient 546, 547

on_response method of
class StreamingClient 547

on_status method of class
StreamingClient 546

OpenMapQuest
API key 525

OpenMapQuest (geopy)
geocode method 560

OpenMapQuest class (geopy)

559, 560

OpenMapQuest geocoding
service 525

OpenStreetMap.org 525

overriding a method 546

P
page of Twitter results 530

Paginator class (Tweepy)

530

flatten method 530

Index

panning a map 554

payload returned by a Twit-
ter API method 523

persistent connection 545, 550

Popup class (folium) 558

project to manager your
Twitter apps 521

pushed tweets from the
Twitter Streaming API 545,

550

PyMongo 562

Q
query string 535

query string tutorial (Twitter
v2 API) 537

R
rate limit (Twitter API) 518,

527

recurrent neural network
(RNN) 563

relational database
relational database man-

agement system
(RDBMS) 562

S
save method of class Map 558

screen_name property of a
User (Twitter) 528

search method of class Cli-
ent 534

search operators in Twitter
v2 API query strings 536

sentiment analysis 550

sentiment in tweets 516

set_options function
(tweet-preprocessor li-
brary) 545

simple linear regression 563

sorted built-in function 531

standalone Twitter v2 API
search operator 536

Stream class (Tweepy) 549

filter method 549

StreamingClient (Tweepy)
add_rules method 549

delete_rules method

548

get_rules method 548

StreamingClient class
(Tweepy) 546

on_connect method 546,

547

on_response method 546,

547

StreamResponse (Tweepy)

546, 547

StreamRule (Tweepy) 545,

548, 549

T
time series 562, 563

timeline (Twitter) 529

trending topics (Twitter) 517,

539

Trends API (Twitter v1.1
APIs) 518

trends_place method of
class API 540

Tweepy
API class 539

OAuth2BearerHandler
class 539

StreamResponse 546, 547

StreamRule 545, 548, 549

Tweepy library 518, 524

AsyncStreamingClient
class 550

Client class 526

install 524, 544

Paginator 530

Stream class 549

StreamingClient class

546

wait_on_rate_limit 527

wait_on_rate_lim-

it_notify 527

tweepy module 526

tweepy.Response object 527

tweet JSON object 522

tweet JSON object (Twitter)

522

tweet_fields argument for
filtering tweets 556

tweet-preprocessor library 544

set_options function

545

Tweets API (Twitter v2
APIs) 518

Twitter 517

API key 521

API key secret 521

bearer token 521, 526

data mining 516

history 517

rate limits 518

Streaming API 545, 550

timeline 529

trending topics 539

tweet JSON object 522

user JSON object 523

Index

Twitter API 518

app (for managing cre-
dentials) 522

app rate limit 519

Consumer API keys 521

credentials 522

description of a user ac-
count 528

id of a user account 528

name of a user account 528

payload returned by a
method 523

public_metrics of a
user account 528

rate limit 518, 527

Trends API 518

user rate limit 519

username of a user ac-
count 528

Twitter API credentials 521

Twitter developer account
level
Academic Research 520, 536

Elevated 520, 536, 538, 545,

564, 566

Essentials 520, 536, 545

Twitter search
operators 536

Twitter Trends API 539

Twitter v1.1 APIs
Trends API 518

Twitter v2 API
/2/tweets/search/re-

cent method 534

/2/users/:id/follow-

ers method 530

/2/users/:id/follow-

ing method 532

/2/users/:id/time-

lines/re-

verse_chronologica

l method 533

/2/users/:id/tweets
method 532

/2/users/by/user-

name/:username
method 527

conjunction-required
search operator 536

expansions 535

expansions in a method
call 523

fields in a method call 523

query string tutorial 537

search operators 536

standalone search opera-
tor 536

stream rule 545, 548, 549

user fields 527

Twitter v2 API expansion
'author_id' 556

Twitter v2 APIs
app (for managing cre-

dentials) 521

project to manage your
Twitter apps 521

Tweets API 518

Users API 518

Twittersphere 517

Twitterverse 517

U
United States

geographic center 557

user fields in a Twitter re-
sponse 527

user JSON object 535, 547

user rate limit (Twitter API)

519

user_fields argument for
filtering tweets 556

userJSON object (Twitter)

523

Users API (Twitter v2 APIs)

518

V
visualization

Folium 525

W
wait_on_rate_limit

(Tweepy) 527

web service 518

endpoint 518

Webb Space Telescope 535

WOEID (Yahoo! Where on
Earth ID) 539, 540, 540

Y
Yahoo! Where on Earth ID

(WOEID) 539, 540, 540

Z
zoom a map 554

Index

