
CPreprocessor

O b j e c t i v e s
In this appendix, you’ll:
■ Understand #include in the

context of developing large
programs.

■ Understand include guards for
ensuring a header is included
only once per translation unit.

■ Use #define to create macros
and macros with arguments.

■ Understand conditional
compilation.

■ Display error messages during
conditional compilation.

■ Use assertions to test if the
values of expressions are
correct.

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.2 Appendix C Preprocessor

O
ut

lin
e

C.1 Introduction
This appendix discusses preprocessor directives in more depth. We provide it primarily for
programmers handling legacy C++ code. C++20 modules (Chapter 16) and other Modern
C++ techniques such as constexpr and templates are preferred to using the preprocessor
directives shown here.

Some preprocessor actions are:

• including headers into C++ source-code files,

• defining symbolic constants and macros,

• conditionally compiling source code, and

• conditionally executing preprocessing directives.

All preprocessing directives begin with #, and only whitespace characters may appear
before a preprocessing directive on a line. Preprocessing directives are not C++ statements,
so they do not end in a semicolon (;). They are processed fully for a translation unit before
it is compiled. Placing a semicolon at the end of a preprocessing directive can lead to var-
ious errors.

C.2 #include Preprocessing Directive
The #include preprocessing directive has been used throughout this text. It includes the
text contents of a specified file in place of the directive. With C++20 modules, you can
now import many headers as header units. Some compilers also enable you to import a
modular version of the entire standard library or specific portions of it. As we discussed in
Chapter 16, this can significantly reduce compile times and translation unit sizes.

The two forms of the #include directive are

#include <filename>
#include "filename"

The difference is the location the preprocessor searches for the included file. For angle
brackets (< and >), the preprocessor searches implementation-dependent predesignated
folders and folders you add to the preprocessor’s search path. For quotes, the preprocessor
searches first in the same directory as the file being preprocessed, then in the same folders
as files contained in angle brackets. Quotes typically are used to include programmer-
defined header files.

C.1 Introduction
D.2 #include Preprocessing Directive
D.3 #define Preprocessing Directive:

Symbolic Constants
D.4 #define Preprocessing Directive:

Macros
C.5 Conditional Compilation

D.6 #error and #pragma Preprocessing
Directives

C.7 Operators # and ##
C.8 Predefined Symbolic Constants
C.9 Assertions

Err

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.3 #define Preprocessing Directive: Symbolic Constants C.3

C.3 #define Preprocessing Directive: Symbolic
Constants
The #define preprocessing directive creates

• symbolic constants—constants represented as symbols—and

• macros (Section C.4)—function-like operations defined as symbols.

The C++ standard refers to both symbolic constants and macros as macros. The #define
preprocessing directive format is

#define identifier replacement-text

The preprocessor replaces all subsequent occurrences of identifier (except those in string lit-
erals) in the file with replacement-text before the program is compiled. After encountering

#define PI 3.14159

the preprocessor replaces all subsequent occurrences PI with 3.14159.
Everything to the right of the symbolic constant name replaces the symbolic constant.

For example, if you were to accidentally include an =, as in

#define PI = 3.14159

the preprocessor to replace every occurrence of PI with "= 3.14159". Replacements like
this cause many subtle logic and syntax errors. Redefining a symbolic constant with a new
value is also an error.

The C++ Core Guidelines say not to use the preprocessor for text manipulations like
PI shown above. They indicate that “macros are a major source of bugs” and “don’t obey
the usual scope and type rules.”1,2 Instead, you should prefer const and constexpr vari-
ables, which have a specific data type and are visible by name to a debugger. Once a sym-
bolic constant is replaced with its replacement text, only the replacement text is visible to
a debugger.

C.4 #define Preprocessing Directive: Macros
This section is included for the benefit of C++ programmers who will need to work with
C legacy code. Rather than macros, Modern C++ programs should use templates and
functions.

You can define function-like macros in #define preprocessing directives. As with a
symbolic constant, the preprocessor replaces a macro-identifier with its replacement-text
before the translation unit is compiled. A macro without arguments is processed like a
symbolic constant. In a macro with arguments, the preprocessor substitutes the arguments
in the replacement-text, then expands the macro—that is, the replacement-text replaces the
macro-identifier and argument list in the program. There is no data type checking for
macro arguments—a macro is used simply for text substitution.

1. C++ Core Guidelines, “ES.30: Don’t use macros for program text manipulation.” Accessed April 4,
2023. https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros.

2. C++ Core Guidelines, “Don’t use macros for constants or ‘functions’.” Accessed April 4, 2023.
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros2.

Err

CG

Err

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.4 Appendix C Preprocessor

Macro for a Circle’s Area
Consider the following macro definition with one argument for the area of a circle:

#define CIRCLE_AREA(x) (PI * (x) * (x))

In the macro call CIRCLE_AREA(y), the preprocessor substitutes y’s value for x in the
replacement text, inserts the symbolic constant PI’s value (defined previously) and
expands the macro in the program. For example, the statement

area = CIRCLE_AREA(4);

expands CIRCLE_AREA(4), as in

area = (3.14159 * (4) * (4));

Because the expression consists only of constants, the compiler can evaluate the expression
and the result will be assigned to area at runtime. The parentheses around each x in the
replacement text and the entire expression force the proper order of evaluation when the
macro argument is an expression. For example, the statement

area = CIRCLE_AREA(c + 2);

expands CIRCLE_AREA(c + 2), as in

area = (3.14159 * (c + 2) * (c + 2));

This evaluates correctly because the parentheses force the proper order of evaluation. If the
parentheses are omitted, the macro expansion becomes

area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly as

area = (3.14159 * c) + (2 * c) + 2;

because of the rules of operator precedence. Forgetting to enclose macro arguments in
parentheses in the replacement text is an error. Like symbolic constants, macros are error-
prone, and the C++ Core Guidelines say to avoid them.3

Function for a Circle’s Area
Macro CIRCLE_AREA should be defined as a function, as in

constexpr double circleArea(double x) {return 3.14159 * x * x;}

If you require support for multiple data types, define circleArea as a function template
instead. Though there’s overhead associated with a function call, modern C++ compilers
often can perform optimizations to eliminate that overhead, and constexpr functions, in
particular, can be completely evaluated at compile-time if their arguments are compile-
time constants.

Macro for a Rectangle’s Area
The following is a macro definition with two arguments for the area of a rectangle:

#define RECTANGLE_AREA(x, y) ((x) * (y))

3. C++ Core Guidelines, “Don’t use macros for constants or ‘functions’.” Accessed April 4, 2023.
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros2.

Err

CG

Perf

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.5 Conditional Compilation C.5

Wherever RECTANGLE_AREA(a, b) appears in the program, the values of a and b are sub-
stituted in the macro replacement text, and the macro is expanded in place of the macro
name. For example, the statement

rectArea = RECTANGLE_AREA(a + 4, b + 7);

is expanded to

rectArea = ((a + 4) * (b + 7));

The value of the expression is evaluated and assigned to variable rectArea.

Defining Multiline Macros
The replacement text for a macro or symbolic constant usually consists of any text to the
right of the identifier and its argument list in the #define directive. If the replacement text
for a macro or symbolic constant is longer than the remainder of the line, you must place
a backslash (\) at the end of each line of the macro except the last. These indicate that the
replacement text continues on the next line.

Undefining Macros
Symbolic constants and macros can be discarded using the #undef preprocessing direc-
tive. Directive #undef “undefines” a symbolic constant or macro name. The scope of a
symbolic constant or macro is from its definition until it is either undefined with #undef
or the end of the file is reached. Once undefined, a name can be redefined with #define.

Avoid Expressions with Side Effects When Calling Macros
Note that expressions with side effects (e.g., variable values are modified) should not be
passed to a macro because macro arguments might be evaluated more than once. Macros
can accidentally replace identifiers that were not intended to be a use of the macro but just
happened to be spelled the same. This can lead to exceptionally mysterious compilation
and syntax errors. On the other hand, if you define the same identifier more than once in
C++ code, you’ll get a compilation error.

C.5 Conditional Compilation
Conditional compilation enables you to control the execution of preprocessing directives
and the compilation of program code. Each of the conditional preprocessing directives
evaluates a constant integer expression that will determine whether the code will be com-
piled. Cast expressions, sizeof expressions and enumeration constants cannot be evalu-
ated in preprocessing directives because these are all determined by the compiler and
preprocessing happens before compilation.

The conditional preprocessor construct is much like the if selection structure. Con-
sider the following preprocessor code:

#ifndef NULL
 #define NULL 0
#endif

which determines whether the symbolic constant NULL is already defined. The expression
#ifndef NULL includes the code up to #endif if NULL is not defined and skips the code if
NULL is defined. Every #if construct must end with #endif. The directives #ifdef and

Err

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.6 Appendix C Preprocessor

#ifndef are shorthand for #if defined(name) and #if !defined(name). A multiple-
part conditional preprocessor construct may be tested using the #elif (the equivalent of
else if in an if statement) and the #else (the equivalent of else in an if statement)
directives.

“Commenting Out” Large Blocks of Code
During program development, programmers often find it helpful to “comment out” large
portions of code to prevent it from being compiled. If the code contains /* and */ multi-
line comments, /* and */ cannot be used because they cannot be nested. Instead, you can
use the following preprocessor construct

#if 0
 code prevented from compiling
#endif:

To enable the code to be compiled, simply replace the value 0 in the preceding construct
with the value 1.

Conditional Compilation in Debugging
Conditional compilation is commonly used as a debugging aid. Output statements are
often used to print variable values and confirm the flow of control. These output state-
ments can be enclosed in conditional preprocessing directives so that the statements are
compiled only until the debugging process is completed. For example,

#ifdef DEBUG
 cerr << "Variable x = " << x << "\n";
#endif

causes the cerr statement to be compiled in the program if the symbolic constant DEBUG
has been defined before directive #ifdef DEBUG. This symbolic constant is normally set by
a command-line compiler or by settings in the IDE (e.g., Visual Studio) and not by an
explicit #define definition. When debugging is completed, the #define directive is
removed from the source file, and the output statements inserted for debugging purposes
are ignored during compilation. In larger programs, it might be desirable to define several
different symbolic constants that control the conditional compilation in separate sections
of the source file.

Inserting conditionally compiled output statements for debugging purposes in loca-
tions where C++ currently expects a single statement can lead to syntax errors and logic
errors. In this case, the conditionally compiled statement should be enclosed in a com-
pound statement. Thus, when the program is compiled with debugging statements, the
flow of control of the program is not altered.

Include Guards
In our headers, we use

#pragma once

to ensure that their contents are included into a given translation unit only once. Though
this directive is nonstandard, it’s widely supported by popular C++ compilers, including
all the compilers we use in this book.

Err

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.6 #error and #pragma Preprocessing Directives C.7

The standard way to prevent multiple inclusion is with an #include guard, which
consists of conditional compilation and #define directives, as in:

#ifndef HEADER_NAME
#define HEADER_NAME
 ...
#endif

where HEADER_NAME is a symbolic constant that, by convention, uses the header name in
uppercase with the period replaced by an underscore.

The #include guard prevents the code between #ifndef and #endif from being
#included if HEADER_NAME has been defined. When a header containing an #include
guard is #included the first time, the identifier HEADER_NAME is not yet defined. In this
case, the #define directive defines HEADER_NAME, and the preprocessor includes the
header’s contents in the translation unit. If the header is #included again, HEADER_NAME
already would be defined, so any code between #ifndef and #endif would be ignored.

Attempts to include a header multiple times (inadvertently) often occur in large pro-
grams with many headers that, in turn, include other headers. This could lead to compi-
lation errors if the same definition appears more than once in a preprocessed file.
Chapter 16 discussed how C++20 modules help prevent such problems.

C.6 #error and #pragma Preprocessing Directives
The #error directive

#error tokens

prints an implementation-dependent message including the tokens specified in the direc-
tive. The tokens are sequences of characters separated by spaces. For example,

#error 1 - Out of range error

contains six tokens. In one popular C++ compiler, for example, when an #error directive
is processed, the tokens in the directive are displayed as an error message, preprocessing
stops, and the program does not compile.

The #pragma directive

#pragma tokens

causes an implementation-defined action. A pragma not recognized by the implementa-
tion is ignored. A particular C++ compiler, for example, might recognize pragmas that
enable you to take advantage of that compiler’s specific capabilities.

C.7 Operators # and ##
The # and ## preprocessor operators are available in C++ and ANSI/ISO C. The # opera-
tor causes a replacement-text token to be converted to a string surrounded by quotes. Con-
sider the following macro definition:

#define HELLO(x) cout << "Hello, " #x << "\n";

When HELLO(John) appears in a program file, it is expanded to

cout << "Hello, " "John" << "\n";

Err

Mod

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.8 Appendix C Preprocessor

The string "John" replaces #x in the replacement text. Strings separated by white space are
concatenated during preprocessing, so the above statement is equivalent to

cout << "Hello, John" << "\n";

The # operator must be used in a macro with arguments because the operand of # refers
to a macro argument.

The ## operator concatenates two tokens. Consider the following macro definition:

#define TOKENCONCAT(x, y) x ## y

When TOKENCONCAT appears in the program, its arguments are concatenated and used to
replace the macro. For example, TOKENCONCAT(O, K) is replaced by OK in the program. The
operator must have two operands.

C.8 Predefined Symbolic Constants
The following table shows several predefined symbolic constants. The identifiers for all
but __cplusplus begin and end with two underscores. These identifiers and preprocessor
operator defined (Section C.5) cannot be used in #define or #undef directives. For the
complete list, see https://en.cppreference.com/w/cpp/preprocessor/replace.

C.9 Assertions
The assert macro—defined in the <cassert> header file—tests the value of an expres-
sion. If the value of the expression is 0 (false), then assert prints an error message and calls
function abort (of the general utilities library—<cstdlib>) to terminate program execu-
tion. This is a useful debugging tool for testing whether a variable has a correct value. For
example, suppose variable x should never be larger than 10 in a program. An assertion may
be used to test the value of x and print an error message if the value of x is incorrect. The
statement would be

assert(x <= 10);

If x is greater than 10, an error message containing the line number and file name is dis-
played, and the program terminates. You would then concentrate on this area of the code
to find the error. If the symbolic constant NDEBUG is defined, subsequent assertions will be

Symbolic constant Description

__LINE__ The line number of the current source-code line (an integer constant).

__FILE__ The presumed name of the source file (a string).

__DATE__ The date the source file is compiled (a string of the form "Mmm dd yyyy"
such as "Aug 19 2002").

__STDC__ Indicates whether the program conforms to the ANSI/ISO C standard.
Contains value 1 if there is full conformance and is undefined otherwise.

__TIME__ The time the source file is compiled (a string literal of the form
"hh:mm:ss").

__cplusplus Contains the value 199711L (until C++11), 201103L (C++11), 201402L
(C++14), 201703L (C++17) or 202002L (C++20)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.9 Assertions C.9

ignored. Thus, when assertions are no longer needed (i.e., when debugging is complete),
we insert the line

#define NDEBUG

in the program file rather than deleting each assertion manually. As with the DEBUG sym-
bolic constant, NDEBUG is often set by compiler command-line options or through a setting
in the IDE.

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

C.10 Appendix C Preprocessor

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

