
D
Bit Manipulation

D.1 Introduction
This appendix discusses the manipulation of bits in integer data. We discuss the bitwise
operators that allow you to access and manipulate the individual bits in bytes of data. We
also present bit fields—structures that can be used to specify the exact number of bits a
variable occupies in memory.

C++ provides extensive bit-manipulation capabilities for getting down to the “bits-
and-bytes” hardware level. Bit manipulation is typically used in programs that need to
communicate directly with hardware. It’s also used in encryption data compression and
other algorithms.1 We introduce each bitwise operator and discuss how to save memory
by using bit fields.

D.2 Bitwise Operators
All data is represented internally by computers as sequences of bits. Each bit can assume
the value 0 or the value 1. On most systems, a sequence of eight bits forms a byte—the
standard storage unit for a variable of type char. Other data types are stored in larger num-
bers of bytes. Bitwise operators manipulate the bits of integral operands (char, short, int
and long; both signed and unsigned)—typically, unsigned integers.

The bitwise operator discussions in this section show the binary representations of the
integer operands. For a detailed explanation of the binary (base-2) number system, see
online Appendix B. Some of these programs might not work on your system without
modification due to the machine-dependent nature of bitwise manipulations.

The bitwise operators are:

• bitwise AND (&),

• bitwise inclusive OR (|),

• bitwise exclusive OR (^),

• left shift (<<),

• right shift (>>) and

• bitwise complement (~)—also known as the one’s complement.

1. “Bit manipulation.” Wikipedia. Wikimedia Foundation. Accessed April 4, 2023. https://en.wiki-
pedia.org/wiki/Bit_manipulation.

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.2 Appendix D Bit Manipulation

We’ve been using &, << and >> for other purposes—this is a classic example of operator
overloading. Detailed discussions of each bitwise operator appear in the following exam-
ples. The bitwise operators are summarized in the following table.

Printing a Binary Representation of an Integral Value
When using the bitwise operators, it’s useful to illustrate their precise effects by printing
values in their binary representation. The program of Fig. D.1 prints an unsigned integer
in its binary representation in groups of eight bits each.

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding
bits in the two operands are both 1.

| bitwise inclusive OR The bits in the result are set to 1 if one or both of the
corresponding bits in the two operands is 1.

^ bitwise exclusive OR The bits in the result are set to 1 if exactly one of the
corresponding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number
of bits specified by the second operand. Fills from the
right with 0 bits.

>> right shift with sign
extension

Shifts the bits of the first operand right by the number
of bits specified by the second operand. The method
of filling from the left is machine-dependent.

~ bitwise complement All 0 bits are set to 1, and all 1 bits are set to 0.

1 // figE_01.cpp
2 // Printing an unsigned integer in bits.
3 #include <format>
4 #include <iostream>
5
6 void displayBits(unsigned); // prototype
7
8 int main() {
9 unsigned inputValue{0}; // integral value to print in binary

10
11 std::cout << "Enter an unsigned integer: ";
12 std::cin >> inputValue;
13 displayBits(inputValue);
14 }
15
16 // display bits of an unsigned integer value
17 void displayBits(unsigned value) {
18 const unsigned SHIFT{8 * sizeof(unsigned) - 1};
19 const unsigned MASK{static_cast<const unsigned>(1 << SHIFT)};
20
21 std::cout << std::format("{:10d} = ", value);
22

Fig. D.1 | Printing an unsigned integer in bits. (Part 1 of 2.)
©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.2 Bitwise Operators D.3

Function displayBits (lines 17–34) uses the bitwise AND operator to combine vari-
able value with constant MASK. The bitwise AND operator is often used with an operand
called a mask—an integer value with specific bits set to 1. Masks hide some bits in a value
while selecting other bits. In displayBits, line 19 initializes constant MASK with 1 <<
SHIFT. The value of constant SHIFT was calculated in line 18 by

8 * sizeof(unsigned) - 1

This expression multiplies an unsigned object’s number of bytes by 8 (the number of bits
in a byte) to get the total number of bits required to store an unsigned object, then sub-
tracts 1. The bit representation of 1 << SHIFT on a computer that represents unsigned
objects in four bytes of memory is

10000000 00000000 00000000 00000000

The left-shift operator shifts the value 1 from the low-order (rightmost) bit to the high-
order (leftmost) bit in MASK and fills with 0 bits from the right. Line 25 prints a 1 or a 0
for the current leftmost bit of value.

Assume value contains 65000, which in bits is

00000000 00000000 11111101 11101000

When you combine value and MASK using &, all the bits except the high-order bit in value
are “masked off” (hidden) because any bit “ANDed” with 0 yields 0.

If the leftmost bit is 1, value & MASK evaluates to

00000000 00000000 11111101 11101000 (value)
10000000 00000000 00000000 00000000 (MASK)

00000000 00000000 00000000 00000000 (value & MASK)

23 // display bits
24 for (unsigned i{1}; i <= SHIFT + 1; ++i) {
25 std::cout << (value & MASK ? '1' : '0');
26 value <<= 1; // shift value left by 1
27
28 if (i % 8 == 0) { // output a space after 8 bits
29 std::cout << ' ';
30 }
31 }
32
33 std::cout << "\n";
34 }

Enter an unsigned integer: 65000
 65000 = 00000000 00000000 11111101 11101000

Enter an unsigned integer: 29
 29 = 00000000 00000000 00000000 00011101

Fig. D.1 | Printing an unsigned integer in bits. (Part 2 of 2.)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.4 Appendix D Bit Manipulation

The value 0 is treated as false, and displayBits displays a 0. Then line 26 shifts value
left by one bit with the expression value <<= 1. These steps are repeated for each bit in
value. Eventually, a 1 bit shifts into the leftmost bit position. Consider the following bit-
wise AND:

11111101 11101000 00000000 00000000 (value)
10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value & MASK)

Both left bits are 1s, so the & expression’s result is nonzero (true), and displayBits dis-
plays a 1. The following table summarizes combining two bits with the bitwise AND (&)
operator.

The program of Fig. D.2 demonstrates the bitwise AND operator, the bitwise inclu-
sive OR operator, the bitwise exclusive OR operator and the bitwise complement oper-
ator. Function displayBits is identical to the one in Fig. D.1.

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

1 // figE_02.cpp
2 // Bitwise AND, inclusive OR,
3 // exclusive OR and complement operators.
4 #include <format>
5 #include <iostream>
6
7 void displayBits(unsigned); // prototype
8
9 int main() {

10 // demonstrate bitwise &
11 unsigned number1{2179876355};
12 unsigned mask{1};
13 std::cout << "The result of combining the following\n";
14 displayBits(number1);
15 displayBits(mask);
16 std::cout << "using the bitwise AND operator & is\n";
17 displayBits(number1 & mask);
18
19 // demonstrate bitwise |
20 number1 = 15;
21 unsigned setBits{241};
22 std::cout << "\nThe result of combining the following\n";
23 displayBits(number1);
24 displayBits(setBits);

Fig. D.2 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 1 of 3.)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.2 Bitwise Operators D.5

25 std::cout << "using the bitwise inclusive OR operator | is\n";
26 displayBits(number1 | setBits);
27
28 // demonstrate bitwise exclusive OR
29 number1 = 139;
30 unsigned number2{199};
31 std::cout << "\nThe result of combining the following\n";
32 displayBits(number1);
33 displayBits(number2);
34 std::cout << "using the bitwise exclusive OR operator ^ is\n";
35 displayBits(number1 ^ number2);
36
37 // demonstrate bitwise complement
38 number1 = 21845;
39 std::cout << "\nThe one's complement of\n";
40 displayBits(number1);
41 std::cout << "is\n";
42 displayBits(~number1);
43 }
44
45 // display bits of an unsigned integer value
46 void displayBits(unsigned value) {
47 const unsigned SHIFT{8 * sizeof(unsigned) - 1};
48 const unsigned MASK{static_cast<const unsigned>(1 << SHIFT)};
49
50 std::cout << std::format("{:10d} = ", value);
51
52 // display bits
53 for (unsigned i{1}; i <= SHIFT + 1; ++i) {
54 std::cout << (value & MASK ? '1' : '0');
55 value <<= 1; // shift value left by 1
56
57 if (i % 8 == 0) { // output a space after 8 bits
58 std::cout << ' ';
59 }
60 }
61
62 std::cout << "\n";
63 }

The result of combining the following
2179876355 = 10000001 11101110 01000110 00000011
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

Fig. D.2 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 2 of 3.)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.6 Appendix D Bit Manipulation

Bitwise AND Operator (&)
In Fig. D.2, line 11 uses 2179876355 (10000001 11101110 01000110 00000011) to initial-
ize variable number1, and line 12 uses 1 (00000000 00000000 00000000 00000001) to ini-
tialize variable mask. When mask and number1 are combined using the bitwise AND
operator (&) in the expression number1 & mask (line 17), the result is 00000000 00000000
00000000 00000001. All the bits except the low-order bit in variable number1 are “masked
off” (hidden) by “ANDing” with constant MASK.

Bitwise Inclusive OR Operator (|)
The bitwise inclusive OR operator sets specific bits to 1 in an operand. In Fig. D.2, line
20 assigns 15 (00000000 00000000 00000000 00001111) to variable number1, and line 21
uses 241 (00000000 00000000 00000000 11110001) to initialize variable setBits. When
number1 and setBits are combined using the bitwise inclusive OR operator (|) in the
expression number1 | setBits (line 16), the result is 255 (00000000 00000000 00000000
11111111). The following table summarizes combining two bits with the bitwise inclu-
sive-OR operator.

Bitwise Exclusive OR (^)
The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of the
corresponding bits in its two operands is 1. In Fig. D.2, lines 29–30 give variables number1
and number2 the values 139 (00000000 00000000 00000000 10001011) and 199 (00000000
00000000 00000000 11000111), respectively. When these variables are combined with the
bitwise exclusive OR operator in the expression number1 ^ number2 (line 35), the result is
00000000 00000000 00000000 01001100. The following table summarizes combining two
bits with the bitwise exclusive OR operator.

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. D.2 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 3 of 3.)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.2 Bitwise Operators D.7

Bitwise Complement (~)
The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result and
all 0 bits to 1. This is referred to as “taking the one’s complement of the value.” In
Fig. D.2, line 38 assigns variable number1 the value 21845 (00000000 00000000 01010101
01010101). When the expression ~number1 evaluates, the result is (11111111 11111111
10101010 10101010).

Bitwise Shift Operators
Figure D.3 demonstrates the left-shift (<<) and the right-shift (>>)operators. Function
displayBits is identical to the one in Fig. D.1.

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

1 // figE_3.cpp
2 // Using the bitwise shift operators.
3 #include <format>
4 #include <iostream>
5
6 void displayBits(unsigned); // prototype
7
8 int main() {
9 unsigned number1{960};

10
11 // demonstrate bitwise left shift
12 std::cout << "The result of left shifting\n";
13 displayBits(number1);
14 std::cout << "8 bit positions using the left-shift operator is\n";
15 displayBits(number1 << 8);
16
17 // demonstrate bitwise right shift
18 std::cout << "\nThe result of right shifting\n";
19 displayBits(number1);
20 std::cout << "8 bit positions using the right-shift operator is\n";
21 displayBits(number1 >> 8);
22 }
23
24 // display bits of an unsigned integer value
25 void displayBits(unsigned value) {
26 const unsigned SHIFT{8 * sizeof(unsigned) - 1};
27 const unsigned MASK{static_cast<const unsigned>(1 << SHIFT)};
28

Fig. D.3 | Bitwise shift operators. (Part 1 of 2.)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.8 Appendix D Bit Manipulation

Left-Shift Operator
The left-shift operator (<<) shifts the bits of its left operand to the left by the number of
bits specified in its right operand. Bits vacated to the right are replaced with 0s; bits shifted
off the left are lost. In Fig. D.3, line 9 initializes variable number1 with the value 960
(00000000 00000000 00000011 11000000). The result of left-shifting number1 eight bits in
the expression number1 << 8 (line 15) is 245760 (00000000 00000011 11000000 00000000).

Right-Shift Operator
The right-shift operator (>>) shifts the bits of its left operand to the right by the number
of bits specified in its right operand. Performing a right shift on an unsigned integer causes
the vacated bits at the left to be replaced by 0s; bits shifted off the right are lost. In
Fig. D.3, the result of right-shifting number1 in the expression number1 >> 8 (line 21) is 3
(00000000 00000000 00000000 00000011).

The result of shifting a value is undefined if the right operand is negative or if the right
operand is greater than or equal to the number of bits in which the left operand is stored.
The result of right-shifting a signed value is machine-dependent. Some machines fill
with zeros. Others use the sign bit.

Bitwise Assignment Operators
Each bitwise operator (except the bitwise complement operator) has a corresponding
assignment operator. These bitwise assignment operators are shown in the following
table. Each modifies its left operand.

29 std::cout << std::format("{:10d} = ", value);
30
31 // display bits
32 for (unsigned i{1}; i <= SHIFT + 1; ++i) {
33 std::cout << (value & MASK ? '1' : '0');
34 value <<= 1; // shift value left by 1
35
36 if (i % 8 == 0) { // output a space after 8 bits
37 std::cout << ' ';
38 }
39 }
40
41 std::cout << "\n";
42 }

The result of left shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the left-shift operator is
 245760 = 00000000 00000011 11000000 00000000

The result of right shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the right-shift operator is
 3 = 00000000 00000000 00000000 00000011

Fig. D.3 | Bitwise shift operators. (Part 2 of 2.)

Err

SE

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.3 Bit Fields D.9

D.3 Bit Fields
You can specify the number of bits in which an integral type or enum type member of a
class or a structure is stored. Such a member is referred to as a bit field and enables better
memory utilization by storing data in the minimum number of bits required. Bit field
members must have an integral or enum type.

The following structure definition contains three unsigned bit fields—face, suit
and color—used to represent a card from a deck of 52 cards:

struct BitCard {
 unsigned face : 4;
 unsigned suit : 2;
 unsigned color : 1;
};

You declare a bit field by following an integral type or enum type member with a colon (:)
and an integer constant representing the bit field’s width—the number of bits in which
the member is stored.

BitCard’s definition indicates that face is stored in four bits, suit in 2 bits and color
in one bit. The number of bits for each is based on the member’s desired range of values.

• Member face stores values between 0 (Ace) and 12 (King)—four bits can store a
value between 0 and 15.

• Member suit stores values between 0 and 3 (0 = Diamonds, 1 = Hearts, 2 =
Clubs, 3 = Spades)—two bits can store a value between 0 and 3.

• Member color stores either 0 (Red) or 1 (Black)—one bit can store either 0 or 1.

The program in Figs. D.4–D.6 creates array deck containing BitCard structures
(line 23 of Fig. D.4). The constructor inserts the 52 cards in the deck array, and the func-
tion deal prints the 52 cards. Bit fields are accessed via the dot (.) operator (lines 11–13
and 21–26 of Fig. D.5).

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.

^= Bitwise exclusive OR assignment operator.

<<= Left-shift assignment operator.

>>= Right-shift with sign extension assignment operator.

1 // Fig. D.4: DeckOfCards.h
2 // Definition of class DeckOfCards that
3 // represents a deck of playing cards.
4 #include <array>
5

Fig. D.4 | Definition of class DeckOfCards that represents a deck of playing cards. (Part 1 of 2.)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.10 Appendix D Bit Manipulation

6 // BitCard structure definition with bit fields
7 struct BitCard {
8 unsigned face : 4; // 4 bits; 0-15
9 unsigned suit : 2; // 2 bits; 0-3

10 unsigned color : 1; // 1 bit; 0-1
11 };
12
13 // DeckOfCards class definition
14 class DeckOfCards {
15 public:
16 static const int faces{13};
17 static const int colors{2}; // black and red
18 static const int numberOfCards{52};
19
20 DeckOfCards(); // constructor initializes deck
21 void deal() const; // deals cards in deck
22 private:
23 std::array<BitCard, numberOfCards> deck; // represents deck of cards
24 };

1 // Fig. D.5: DeckOfCards.cpp
2 // Member-function definitions for class DeckOfCards that simulates
3 // the shuffling and dealing of a deck of playing cards.
4 #include <format>
5 #include <iostream>
6 #include "DeckOfCards.h" // DeckOfCards class definition
7
8 // no-argument DeckOfCards constructor intializes deck
9 DeckOfCards::DeckOfCards() {

10 for (size_t i{0}; i < deck.size(); ++i) {
11 deck[i].face = i % faces; // faces in order
12 deck[i].suit = i / faces; // suits in order
13 deck[i].color = i / (faces * colors); // colors in order
14 }
15 }
16
17 // deal cards in deck
18 void DeckOfCards::deal() const {
19 for (size_t k1{0}, k2{k1 + deck.size() / 2};
20 k1 < deck.size() / 2 - 1; ++k1, ++k2) {
21 std::cout << std::format("Card:{:3d}", deck[k1].face)
22 << std::format(" Suit:{:2d}", deck[k1].suit)
23 << std::format(" Color:{:2d}", deck[k1].color)
24 << std::format(" Card:{:3d}", deck[k2].face)
25 << std::format(" Suit:{:2d}", deck[k2].suit)
26 << std::format(" Color:{:2d}\n", deck[k2].color);
27 }
28 }

Fig. D.5 | Member-function definitions for class DeckOfCards.

Fig. D.4 | Definition of class DeckOfCards that represents a deck of playing cards. (Part 2 of 2.)

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.3 Bit Fields D.11

Unnamed Bit Fields
An unnamed bit field can be used as padding in the structure. For example, the structure
definition uses an unnamed three-bit field as padding—nothing can be stored in those
three bits. Member b is stored in another storage unit:

struct Example {
 unsigned a : 13;
 unsigned : 3; // align to next storage-unit boundary
 unsigned b : 4;
};

Zero-Width Unnamed Bit Fields
An unnamed bit field with a zero width is used to align the next bit field on a new storage-
unit boundary. For example, the following structure definition uses an unnamed 0-bit
field to skip the remaining bits (as many as there are) of the storage unit in which a is
stored and align b on the next storage-unit boundary:

1 // figE_06.cpp
2 // Card shuffling and dealing program.
3 #include "DeckOfCards.h" // DeckOfCards class definition
4
5 int main() {
6 DeckOfCards deckOfCards; // create DeckOfCards object
7 deckOfCards.deal(); // deal the cards in the deck
8 }

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

Fig. D.6 | Bit fields used to store a deck of cards.

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

D.12 Appendix D Bit Manipulation

struct Example {
 unsigned a : 13;
 unsigned : 0; // align to next storage-unit boundary
 unsigned b : 4;
};

Bit Field Notes
When using bit fields, keep the following in mind:

• Bit-field manipulations are machine-dependent. Some computers allow bit fields
to cross storage unit boundaries, whereas others do not.

• Attempting to take the address of a bit field is a compilation error. The & operator
may not be used with bit fields because a pointer can designate only a particular
byte in memory. On the other hand, bit fields can start in the middle of a byte.

• Although bit fields save space, using them can cause the compiler to generate
slower-executing machine-language code. This occurs because it takes extra
machine-language operations to access only portions of an addressable storage
unit.

SE

Err

Perf

©Copyright 1992-2023 by Deitel & Associates, Inc. All Rights Reserved.

