
Before using this book, please read this section to understand our conventions and set up
your computer to compile and run our example programs. If there are changes to the
instructions presented here, we’ll post updates on the book’s webpage:
 https://deitel.com/cpphtp11

Font and Naming Conventions
We use fonts to distinguish application elements and C++ code elements from regular text:

• We use a bold sans-serif font for on-screen application elements, such as “the File
menu.”

• We use a sans-serif font for commands and C++ code elements, as in sqrt(9).

Obtaining the Code Examples
Download the C++ How to Program: An Objects-Natural Approach, 11/e code examples
from our GitHub repository at

 https://github.com/pdeitel/CPlusPlusHowToProgram11e

If you’re familiar with Git and GitHub, clone the repository to your system. If you’re not
a GitHub user, click the green Code button and select Download ZIP to download a ZIP
file containing the code. To extract the ZIP file’s contents:

• Windows: Right-click the ZIP file, select Extract All…, select your user account’s
Documents folder, then click Extract.

• macOS: Move the ZIP file to your user account’s Documents folder, then double-
click the ZIP file.

• Linux (varies by distribution): When you download the ZIP file on Ubuntu
Linux, you can choose to open the file with the Archive Manager or save it.
Choose Archive Manager, then click Extract in the window that appears. Select
your user account’s Documents folder, then click Extract again.

Throughout the book, our instructions assume the code examples reside in your user
account’s Documents folder in a subfolder named examples.

If you’re not familiar with Git and GitHub but are interested in learning about these
essential developer tools, check out

 https://guides.github.com/activities/hello-world/

Before
You Begin

liv Before You Begin

Compilers We Use
Ensure that you have a recent C++ compiler installed. We tested the book’s code examples
using the following free compilers:

• For Microsoft Windows, we used Microsoft Visual Studio Community edition,
which includes the Visual C++ compiler and other Microsoft development tools.

• For Linux, we used the GNU C++ compiler (g++)1—part of the GNU Compiler
Collection (GCC). Typically, a version of GNU C++ is pre-installed on most
Linux systems. You might need to update the compiler to a more recent version.
GNU C++ also can be installed on macOS and Windows systems.

• For macOS, we used both the GNU C++ compiler (g++) and the Apple Xcode2

C++ compiler, which uses a version of the LLVM Clang C++ compiler (clang++).

• You can run the latest versions of GNU C++ (g++) and LLVM Clang C++
(clang++)3 conveniently on Windows, macOS and Linux via Docker containers.
See the “Docker and Docker Containers” section in this Before You Begin section.

At the time of this writing, Apple Xcode does not support several key C++20 features
we use throughout this book, so we recommend using the most recent version of g++.
When Xcode’s C++20 support changes, we’ll post updates at

https://deitel.com/cpphtp11

This Before You Begin describes installing the compilers and Docker. Section 1.11’s test-
drives demonstrate how to compile and run C++ programs using these compilers.

Installing Visual Studio Community Edition on Windows
If you are a Windows user, first ensure that your system meets the requirements for Mic-
rosoft Visual Studio Community edition at

https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-
requirements

Next, go to

https://visualstudio.microsoft.com/downloads/

Then perform the following installation steps:

1. Click Free Download under Community.

2. Depending on your web browser, you may see a pop-up at the bottom of your
screen where you can click Run to start the installation process. If not, double-
click the installer file in your Downloads folder when the download completes.

3. In the User Account Control dialog, click Yes to allow the installer to make chang-
es to your system.

4. In the Visual Studio Installer dialog, click Continue to allow the installer to down-
load the components it needs for you to configure your installation.

1. GNU C++ (g++) 13.1 at the time of this writing.
2. Xcode 14.3.1 at the time of this writing.
3. Clang C++ (clang++) 16 at the time of this writing.

 Installing Xcode on macOS lv

5. For this book’s examples, select the option Desktop Development with C++, which
includes the Visual C++ compiler and the C++ standard libraries.

6. Click Install. The installation process can take a significant amount of time.

Installing Xcode on macOS
On macOS, perform the following steps to install Xcode:

1. Click the Apple menu and select App Store…, or click the App Store icon in the
dock at the bottom of your Mac screen.

2. In the App Store’s Search field, type Xcode.

3. Click the Get button to install Xcode.

Installing the GNU C++ (g++) 13 on macOS
On macOS perform the following steps to install GNU C++ on macOS:

1. In the Finder’s Go menu, select Utilities, then double-click Terminal to open a Ter-
minal (command line) window.

2. Check if the brew command is installed by typing brew and pressing press Enter
(or return). If macOS does not recognize the command, go to https://brew.sh
and copy the installation command below Install Homebrew. Paste this command
into the Terminal window, then press Enter (or return).

3. Type the following command, then press Enter (or return) to install the GNU
Compiler Collection (GCC), which includes g++:

 brew install gcc@13

Installing the GNU C++ (g++) 13 on Linux
There are many Linux distributions, and they often use different software upgrade tech-
niques. Check your distribution’s online documentation for instructions on how to upgrade
GNU C++ to the latest version. You also can download GNU C++ for various platforms at

https://gcc.gnu.org/install/binaries.html

Docker and Docker Containers
Docker is a tool for packaging software into containers (also called images) that bundle
everything required to execute that software across platforms, which is particularly useful
for software packages with complicated setups and configurations. For many such pack-
ages, there are free preexisting Docker containers (often at https://hub.docker.com) that
you can download and execute locally on your system. Docker is a great way to get started
with new technologies quickly and to experiment with new compiler versions.

Installing Docker
To use a Docker container, you must first install Docker. Windows and macOS users
should download and run the Docker Desktop installer from

https://www.docker.com/get-started

lvi Before You Begin

Then follow the on-screen instructions. Also, sign up for a Docker Hub account on this site,
which gives you access to the many containers at https://hub.docker.com. Linux users
should install Docker Engine from

https://docs.docker.com/engine/install/

Getting the GNU Compiler Collection Docker Container
The GNU team maintains official Docker containers at

https://hub.docker.com/_/gcc

Once Docker is installed and running, open a Command Prompt4 (Windows), Terminal
(macOS/Linux) or shell (Linux), then execute the command

docker pull gcc:latest

Docker downloads a container configured with the GNU Compiler Collection (GCC)’s
most current version—13.1 at the time of this writing. In one of Section 1.11’s test-drives,
we’ll demonstrate how to execute the container and use it to compile and run C++ programs.

Getting an LLVM Clang C++ Docker Container
Currently, the LLVM Clang team does not provide an official Docker container, but
many working containers are available on https://hub.docker.com. For this book, we
used a popular one from

https://hub.docker.com/r/teeks99/clang-ubuntu

Open a Command Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then
execute the command

docker pull teeks99/clang-ubuntu:16

Docker downloads a container configured with LLVM Clang’s most current version—16
at the time of this writing. In one of Section 1.11’s test-drives, we’ll demonstrate how to
execute the container and use it to compile and run C++ programs.

Getting Your C++ Questions Answered
As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

and
https://deitel.com/contact-us

We’ll respond promptly.
The web is loaded with programming information. An invaluable resource for nonpro-

grammers and programmers alike is the website

https://stackoverflow.com

on which you can

• search for answers to common programming questions,

• search for error messages to see what causes them,

4. Windows users should choose Run as administrator when opening the Command Prompt.

 Online C++ Documentation lvii

• ask programming questions to get answers from programmers worldwide and

• gain valuable insights about programming in general.

For live C++ discussions, check out the Slack channel cpplang:

https://cpplang-inviter.cppalliance.org

and the Discord server #include<C++>:

https://www.includecpp.org/discord/

Online C++ Documentation
For C++ standard library documentation, visit

https://cppreference.com

Also, be sure to check out the C++ FAQ at

https://isocpp.org/faq

Static Code Analysis Tools
We used the following static code analyzers to check our code examples for adherence to
the C++ Core Guidelines, adherence to coding standards, adherence to Modern C++ idi-
oms, possible security problems, common bugs, possible performance issues, code read-
ability and more:

• clang-tidy—https://clang.llvm.org/extra/clang-tidy/

• cppcheck—https://cppcheck.sourceforge.io/

• Microsoft’s C++ Core Guidelines static code analysis tools, which are built into
Visual Studio’s static code analyzer

You can install clang-tidy on Linux with the following commands:

sudo apt-get update -y
sudo apt-get install -y clang-tidy

You can install cppcheck for various operating-system platforms by following the instruc-
tions at https://cppcheck.sourceforge.io/.

For Visual C++, once you learn how to create a project in Section 1.11’s test-drives,
you can configure Microsoft’s C++ Core Guidelines static code analysis tools as follows:

1. Right-click your project name in the Solution Explorer and select Properties.

2. In the dialog that appears, select Code Analysis > General in the left column, then
set Enable Code Analysis on Build to Yes in the right column.

3. Next, select Code Analysis > Microsoft in the left column. Then, in the right col-
umn, you can select a subset of the analysis rules from the drop-down list. We
used the option <Choose multiple rule sets…> to select all the rules that begin
with C++ Core Check. Click Save As…, give your custom rule set a name, click
Save, then click Apply.

