
1 An Innovative Modern C++ Programming Textbook
Good programmers write code that humans can understand.1

—Martin Fowler

Welcome to C++ How to Program: An Objects-Natural Approach, 11/e. We present a
friendly, contemporary, code-intensive, case-study-oriented introduction to C++, the
world’s third most popular programming language according to the TIOBE Index.2

C++ is popular for building high-performance business-critical and mission-critical
computing systems—operating systems, real-time systems, embedded systems, game sys-
tems, banking systems, air-traffic-control systems, communications systems and more. This
book is an introductory- through intermediate-level college textbook presentation of the
C++20 version of C++ and its associated standard libraries, with a look toward C++23 and
C++26. In this Preface, we present the “soul of the book.”

Live-Code Approach and Getting the Code
At the heart of the book is the Deitel signature live-code approach. Rather than code snip-
pets, we show C++ as it’s intended to be used in the context of 255 complete, working,
real-world C++ programs with live outputs.

Read the Before You Begin section that follows this Preface to learn how to set up your
Windows, macOS or Linux computer to run the code examples. For your convenience,
we provide the book’s examples in C++ source-code (.cpp and .h) files for use with inte-
grated development environments and command-line compilers. All the source code is
available for download at

• https://github.com/pdeitel/CPlusPlusHowToProgram11e

• https://www.deitel.com/cpphtp11

Chapter 1’s Test-Drives (Section 1.11) shows how to compile and run the code exam-
ples with each of our preferred compilers. Executing each program in parallel with reading
the text will make your learning experience “come alive.” If you encounter a problem, you
can reach us at deitel@deitel.com, and we’ll respond promptly.

1. Martin Fowler (with contributions by Kent Beck). Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional. 2018.

2. Tiobe Index for February 2023. Accessed March 8, 2023. https://www.tiobe.com/tiobe-index/.

Preface

xxiv Preface

Key Computing Trends
For many decades:

• computer hardware has rapidly been getting faster, cheaper and smaller,

• Internet bandwidth (that is, its information-carrying capacity) has rapidly been
getting larger and cheaper, and

• quality computer software has become ever more abundant and often free or
nearly free through the open-source movement.

The Internet of Things (IoT) already connects tens of billions of computerized devices of
every imaginable type, and that number is likely to grow quickly. These generate enor-
mous volumes of data (one form of “big data”) at rapidly increasing speeds and quantities.
And most computing will eventually be performed in “the Cloud”—that is, by using com-
puting services accessible over the Internet.

For the novice, the book’s early chapters establish a solid foundation in programming
fundamentals. The mid-range to high-end chapters and the 50 more significant case study
examples and case study exercises will ease you into professional software-development
challenges and practices.

Given the extraordinary performance demands that today’s applications place on
computer hardware, software and the Internet, professionals often choose C++ to build the
most performance-intensive portions of these applications. Throughout the book, we
emphasize performance issues to help you prepare for industry.

2 Modern C++
We cover Modern C++—C++20, C++17, C++14 and C++11—with a look toward key fea-
tures coming in C++23 and anticipated for C++26. We employ industry best practices,
emphasizing Modern C++ idioms—which change how developers write C++ programs—
while focusing on performance, security and software engineering. We present rich treat-
ments of C++20’s “big four” features—ranges, concepts, modules and coroutines. We’ll say
more about these in Section 6 of this Preface.

3 Target Audiences
The book’s modular architecture (see the diagram on the next page) makes it appropriate
for several audiences:

• Introductory and intermediate college programming courses in Computer Sci-
ence, Computer Engineering, Information Systems, Information Technology,
Software Engineering and related disciplines.

• Science, technology, engineering and math (STEM) college courses with a pro-
gramming component.

• Professional industry training courses.

• Experienced professionals learning the latest Modern C++ idioms to prepare for
upcoming projects.

•
O

N
 =

 o
bj

ec
ts

-n
at

ur
al

 c
as

e
st

ud
y.

•
C+

+2
0’

s “
Bi

g
Fo

ur
”

fe
at

ur
es

: R
an

ge
s,

Co

nc
ep

ts
, M

od
ul

es
 a

nd
 C

or
ou

tin
es

.
•

Li
ve

-c
od

e
ap

pr
oa

ch
: 2

55
 c

om
pl

et
e

pr
og

ra
m

s
w

ith
 li

ve
 o

ut
pu

ts
.

•
Co

m
m

un
ica

te
 w

ith
 th

e
au

th
or

s
at

d
e
i
t
e
l
@
d
e
i
t
e
l
.
c
o
m

.
•

D
ow

nl
oa

d
so

ur
ce

 c
od

e
at

ht
t
ps
:/
/
de
it
el
.c
om
/c
p
ph
tp
11

.

•
St

at
ic

 c
od

e-
an

al
ys

is
 to

ol
s.

•
U

se
 d

ev
el

op
er

 re
so

ur
ce

s:
 G

itH
ub

®,

St
ac

kO
ve

rfl
ow

®,
 o

pe
n-

so
ur

ce
, m

or
e.

•
Pr

og
ra

m
m

in
g

tip
s:

 C
++

 C
or

e
G

ui
de

lin
es

, S
of

tw
ar

e
En

gi
ne

er
in

g,

Pe
rfo

rm
an

ce
, S

ec
ur

ity
, E

rro
rs

,
C

++
20

 M
od

ul
es

, C
++

20
 C

on
ce

pt
s,

D

at
a

Sc
ie

nc
e.

•

g+
+

&
 c

la
ng

++
 D

oc
ke

r c
on

ta
in

er
s.

•
A

 lo
ok

 to
w

ar
d

C+
+2

3
an

d
C+

+2
6.

•
Bl

og
: h
tt
p
s:
//
d
ei
te
l.
co
m/
bl
o
g.

16
. C

++
20

 M
od

ul
es

:
La

rg
e-

Sc
al

e
D

ev
el

op
m

en
t

i
m
p
o
r
t

, h
ea

de
r u

ni
ts

,
m

od
ul

e
de

cl
ar

at
io

ns
,

m
od

ul
e

fra
gm

en
ts

, p
ar

tit
io

ns

17
. P

ar
al

le
l A

lg
or

it
hm

s
&

C

on
cu

rr
en

cy
: A

 H
ig

h-
Le

ve
l V

ie
w

M
ul

ti-
co

re
 p

er
fo

rm
an

ce
 w

ith
 C

++
17

pa

ra
lle

l a
lg

or
ith

m
s,

 c
on

cu
rre

nc
y,

m

ul
tit

hr
ea

di
ng

18
. C

++
20

 C
or

ou
ti

ne
s

c
o
_
y
i
e
l
d

, c
o
_
a
w
a
i
t

, c
o
_
r
e
t
u
r
n

,
co

ro
ut

in
es

 s
up

po
rt

 li
br

ar
ie

s,

ge
ne

ra
to

rs
, e

xe
cu

to
rs

 a
nd

 ta
sk

s

P
A

R
T

 5
, A

dv
an

ce
d

T
op

ic
s:

M

od
ul

es
, P

ar
al

le
l A

lg
or

it
hm

s,

C
on

cu
rr

en
cy

 &
 C

or
ou

ti
ne

s

C
++

 H
ow

 t
o

Pr
og

ra
m

: A
n

O
bj

ec
ts

-N
at

ur
al

 A
pp

ro
ac

h,
 1

1/
e

by
 P

au
l D

ei
te

l &
 H

ar
ve

y
D

ei
te

l

1.
 I

nt
ro

: T
es

t-
D

ri
vi

ng
 P

op
ul

ar
,

Fr
ee

 C
++

 C
om

pi
le

rs
In

tro
 to

 H
ar

dw
ar

e,
 S

of
tw

ar
e

&
 In

te
rn

et
;

Te
st

-D
riv

in
g

th
e V

is
ua

l C
++

, G
N

U
 g

++

an
d

LL
V

M
 c

la
ng

++
 c

om
pi

le
rs

.
2.

 I
nt

ro
 t

o
C

++
20

 P
ro

gr
am

m
in

g
C+

+
fu

nd
am

en
ta

ls.
 “

O
bj

ec
ts

-N
at

ur
al

”
(O

N
) a

pp
ro

ac
h

in
tro

—
us

in
g

lib
ra

rie
s

to
 b

ui
ld

 p
ow

er
fu

l o
bj

ec
t-o

rie
nt

ed

ap
pl

ic
at

io
ns

 w
ith

 fe
w

 li
ne

s
of

 c
od

e.
O

N
: M

an
ip

ul
at

in
g
s
t
r
i
n
g

 O
bj

ec
ts

3.
 C

on
tr

ol
 S

ta
te

m
en

ts
, P

ar
t

1
In

tro
 to

 C
++

20
 te

xt
 fo

rm
at

tin
g.

O

N
: S

up
er

-S
iz

ed
 In

te
ge

rs
 w

ith
 th

e
Bo

os
t M

ul
tip

re
ci

si
on

 L
ib

ra
ry

4.
 C

on
tr

ol
 S

ta
te

m
en

ts
, P

ar
t

2
O

N
: P

re
ci

se
 M

on
et

ar
y

Ca
lc

ul
at

io
ns

w

ith
 th

e
Bo

os
t M

ul
tip

re
ci

sio
n

Li
br

ar
y

5.
 F

un
ct

io
ns

 a
nd

 a
n

In
tr

o
to

Fu

nc
ti

on
 T

em
pl

at
es

O
N

: L
nf

yl
un

 L
hq

to
m

h
W

jtz
 Q

ar
cv

:
Q

jw
az

kr
pl

m
 x

zz
 X

nd
m

w
w

qh
lz

(e
nc

ry
pt

ed
 ti

tle
 fo

r o
ur

 p
riv

at
e-

ke
y

cr
yp

to
gr

ap
hy

 c
as

e
st

ud
y)

PA
R

T
 1

C
++

20
 F

un
da

m
en

ta
ls

 Q
ui

ck
st

ar
t

&
 P

ro
ce

du
ra

l P
ro

gr
am

m
in

g

PA
R

T
 2

C
on

ta
in

er
s,

 C
++

20
 R

an
ge

s,

Po
in

te
rs

, S
tr

in
gs

 &
 F

ile
s

6.
 a

rr
ay

s,
 v

ec
to

rs
, R

an
ge

s
an

d
Fu

nc
ti

on
al

-S
ty

le
 P

ro
gr

am
m

in
g

In
tro

 to
 fu

nc
tio

na
l-s

ty
le

 p
ro

gr
am

m
in

g.
O

N
: C

la
ss

 T
em

pl
at

e
v
e
c
t
o
r

7.

 (
D

ow
np

la
yi

ng
)

Po
in

te
rs

 in
 M

od
er

n
C

++
Se

cu
rit

y
&

 s
af

e
pr

og
ra

m
m

in
g.

O
N

: C
++

20
 s
p
a
n

s
8.

 s
tr

in
gs

, s
tr

in
g_

vi
ew

s,
 T

ex
t

Fi
le

s,
 C

SV
 F

ile
s

an
d

R
eg

ex
O

N
: R

ea
di

ng
 a

nd
 A

na
ly

zi
ng

th

e
Ti

ta
ni

c
D

is
as

te
r D

at
a

(C
SV

)
O

N
: I

nt
ro

 to
 R

eg
ul

ar
 E

xp
re

ss
io

ns

9.
 C

us
to

m
 C

la
ss

es
O

N
: S

tu
dy

in
g

th
e

V
ig

en
èr

e
Se

cr
et

-
K

ey
 C

ip
he

r I
m

pl
em

en
ta

tio
n

10
. O

O
P:

 I
nh

er
it

an
ce

 a
nd

R

un
ti

m
e

Po
ly

m
or

ph
is

m
Pr

og
ra

m
m

in
g

to
 a

n
in

te
rfa

ce
,

11
. O

pe
ra

to
r

O
ve

rl
oa

di
ng

,
C

op
y/

M
ov

e
Se

m
an

ti
cs

, S
m

ar
t

Po
in

te
rs

 a
nd

 R
A

II
C

ra
ft

in
g

va
lu

ab
le

 c
la

ss
es

:
C

us
to

m
 M
y
A
r
r
a
y

 c
la

ss
,

C+
+2

0
th

re
e-

w
ay

 co
m

pa
ris

on
 o

pe
ra

to
r

<
=
>

, r
es

ou
rc

e
m

an
ag

em
en

t v
ia

 R
A

II
(R

es
ou

rc
e

A
cq

ui
si

tio
n

Is
 In

iti
al

iz
at

io
n)

12
. E

x
ce

pt
io

ns
 a

nd

a
Lo

ok
 F

or
w

ar
d

to
 C

on
tr

ac
ts

PA
R

T
 3

M
od

er
n

O
bj

ec
t-

O
ri

en
te

d
Pr

og
ra

m
m

in
g

&
 E

x
ce

pt
io

ns

13
. S

ta
nd

ar
d

Li
br

ar
y

C
on

ta
in

er
s

an
d

It
er

at
or

s
M

an
ip

ul
at

in
g

st
an

da
rd

 d
at

a
st

ru
ct

ur
es

14
. S

ta
nd

ar
d

Li
br

ar
y

A
lg

or
it

hm
s

an
d

C
++

20
 R

an
ge

s
&

 V
ie

w
s

Fu
nc

tio
na

l-s
ty

le
 p

ro
gr

am
m

in
g

15
. T

em
pl

at
es

, C
++

20
 C

on
ce

pt
s

an
d

M
et

ap
ro

gr
am

m
in

g
C

om
pi

le
-t

im
e

po
ly

m
or

ph
is

m
,

fu
nc

tio
n

te
m

pl
at

es
, C

++
20

 ab
br

ev
ia

te
d

fu
nc

tio
n

te
m

pl
at

es
, c

la
ss

 te
m

pl
at

es
,

va
ria

di
c

te
m

pl
at

es
, f

ol
d

ex
pr

es
si

on
s

PA
R

T
 4

, G
en

er
ic

 P
ro

gr
am

m
in

g:

T
em

pl
at

es
, C

on
ce

pt
s

&

T
em

pl
at

e
M

et
ap

ro
gr

am
m

in
g

19
. S

tr
ea

m
 I

/O
 a

nd

C
++

20
 T

ex
t

Fo
rm

at
ti

ng
20

. O
th

er
 T

op
ic

s
an

d
a

Lo
ok

T

ow
ar

d
C

++
23

 a
nd

 C
++

26
21

. C
om

pu
te

r S
ci

en
ce

 T
hi

nk
in

g:

Se
ar

ch
in

g,
 S

or
ti

ng
 a

nd
 B

ig
 O

PA
R

T
 6

M
is

ce
lla

ne
ou

s
T

op
ic

s

xxvi Preface

4 “Objects-Natural” Learning Approach
Traditionally object-oriented programming textbooks have been designated as “late
objects” or “early objects.” What’s really “late” or “early” in these textbooks is not
“objects.” Rather, it’s teaching how to develop custom classes—the blueprints from which
objects are built. We’ve written textbooks using both of these approaches.

What Is “Objects Natural?”
As we wrote our Python textbook,3 we noticed that although our presentation fit the “late
objects” model, it was actually something more—and that something is special. We call it
the “objects-natural approach,” and we’re now applying it to C++ and the other object-
oriented programming languages we write about.

Similar to “late objects,” our objects-natural approach begins with programming fun-
damentals, but you’ll work extensively in the early chapters with easy-to-use powerful pre-
existing classes that do significant things. You’ll quickly create objects of those classes
(typically with one line of code) and tell them to “strut their stuff” with a minimal number
of simple C++ statements.

Even if you’re a programming novice, you can perform significant tasks long before
you learn how to create custom C++ classes in Chapter 9. This is one of the most compel-
ling aspects of working with a mature object-oriented language like C++. After covering
programming fundamentals with the objects-natural approach, we provide a deep treat-
ment of object-oriented programming beginning with a rich treatment of custom class cre-
ation.

An Abundance of Free Classes
We emphasize using the massive number of valuable free classes in the C++ ecosystem.
These typically come from:

• the C++ standard library,

• platform-specific libraries, such as those provided with Microsoft Windows,
Apple macOS or various Linux versions, and

• free third-party C++ libraries, often created by the open-source community.

We encourage you to view lots of free, open-source C++ code available on sites like
GitHub. Reading other programmers’ code is a great way to learn.

The Boost Project
Boost provides 168 powerful open-source C++ libraries4 and serves as a “breeding ground”
for new capabilities that might eventually be incorporated into the C++ standard libraries.
The following StackOverflow post lists Modern C++ libraries and language features that
evolved from the Boost libraries:5

https://stackoverflow.com/a/8852421

3. Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and the
Cloud (https://deitel.com/pycds).

4. “Boost 1.81.0 Library Documentation.” Accessed March 8, 2023. https://www.boost.org/doc/
libs/1_81_0/.

5. Kennytm, Answer to “Which Boost Features Overlap with C++11?” Accessed March 8, 2023.
https://stackoverflow.com/a/8852421.

5 Programming Wisdom and Key C++20 Features xxvii

We use the Boost Multiprecision library in our objects-natural case studies on super-sized
integers (Section 3.14) and precise monetary calculations (Section 4.14).

Objects-Natural Case Studies
Chapter 1 presents a friendly introduction to the basic concepts and terminology of object
technology. In the early chapters, you’ll create and use objects of preexisting classes long
before Chapter 9 discusses how to create custom classes. See Section 6’s Tour of the Book
for descriptions of our objects-natural case studies in Chapters 2–9. A perfect example of
the objects-natural approach is using objects of standard library classes, like array and
vector (Chapter 6), without knowing how to write classes in general or how those classes
are implemented in particular. Throughout the rest of the book, we use C++ standard
library capabilities extensively.

5 Programming Wisdom and Key C++20 Features
We integrate smoothly into the flow of the text software-development wisdom, data sci-
ence topics, C++20 modules and C++20 concepts features:

• Software engineering observations highlight architectural and design issues for
proper software construction, especially for larger systems.

• Security best practices help you strengthen your programs against attacks.

• Performance tips highlight opportunities to make your programs run faster or
minimize the amount of memory they occupy.

• Common programming errors help reduce the likelihood that you’ll make the
same mistakes.

• C++ Core Guidelines recommendations (introduced in Section 12).

• C++20’s new modules features.

• C++20’s new concepts features.

• We present and use data science topics in several examples and exercises.

6 Tour of the Book
The one-page Table of Contents diagram earlier in this Preface provides a high-level over-
view of the book’s modular architecture from “40,000 feet.” We recommend that you
refer to that diagram as you read this section.

The early chapters establish a solid foundation in C++20 fundamentals. The mid-
range to high-end chapters introduce Modern C++ software development. We discuss
C++’s programming models:

• procedural programming,

• functional-style programming,

• object-oriented programming,

• generic programming and

• template metaprogramming.

SE

Sec

Perf

Err

CG

Mod

C Concepts

DS

xxviii Preface

Whether you’re a student getting a sense of the textbook you’ll be using, an instructor
planning your course syllabus or a professional software developer deciding which chapters
to read as you prepare for a project, this detailed Tour of the Book will help you make the
best decisions.

Part 1: Programming Fundamentals Quickstart

Chapter 1, Intro and Test-Driving Popular, Free C++ Compilers, engages programming
novices with intriguing facts and figures to excite them about studying computers and
computer programming. The chapter includes current technology trends, hardware, soft-
ware and Internet concepts, and a sample data hierarchy from bits to bytes, fields, records
and databases. It lays the groundwork for the C++ programming discussions in Chapters
2–21 and the substantial integrated case study examples, exercises and projects.

We discuss the programming-language types and technologies you’ll likely use as you
develop software. We introduce the C++ standard library—existing, reusable, top-quality,
high-performance capabilities that help you avoid “reinventing the wheel.” You’ll enhance
your productivity by using libraries to perform significant tasks while writing only modest
numbers of instructions. We also introduce the Internet, the World Wide Web, the
“Cloud” and the Internet of Things (IoT), laying the groundwork for modern applications
development.

This chapter’s test-drives demonstrate how to compile and execute C++ code with
three of the most popular C++ development environments:

• Microsoft’s Visual C++ in Visual Studio on Windows,

• GNU’s g++ on macOS/Linux and

• The LLVM Compiler Infrastructure’s clang++ on macOS/Linux.

We tested the book’s 255 code examples using each compiler.6 Choose whichever you pre-
fer—the book also works well with many others. See the Before You Begin section that
follows this Preface for compiler installation instructions.

We also demonstrate running g++ and clang++ using Docker containers. Docker is
an important tool that enables you to run the latest versions of these compilers on Win-
dows, macOS or Linux. See Section 7 of this Preface for more details on Docker and
Docker containers.

You’ll learn just how big “big data” is and how quickly it’s getting even bigger. The
chapter closes with an introduction to artificial intelligence (AI)—a key overlap between
computer-science and data-science. AI and data science will likely play significant roles in
your computing career.

Chapter 2, Intro to C++ Programming, presents C++ fundamentals and illustrates key
language features, including input, output, fundamental data types, arithmetic operators
and their precedence, and decision-making. As part of our objects-natural approach,
Section 2.8’s objects-natural case study demonstrates creating and using objects of the
C++ standard library class string—without you having to know how to develop custom
classes in general or how the large complex class string is implemented in particular).

6. We point out the few cases in which a compiler does not support a particular feature.

6 Tour of the Book xxix

Chapter 3, Algorithm Development and Control Statements: Part 1, is one of the most
important chapters for programming novices. It focuses on problem-solving and algorithm
development with C++’s control statements. You’ll develop algorithms through top-down,
stepwise refinement, using the if and if…else selection statements, the while iteration
statement for counter-controlled and sentinel-controlled iteration, and the increment, dec-
rement and assignment operators. The chapter presents three algorithm-development case
studies—Counter-Controlled Iteration, Sentinel-Controlled Iteration and Nested Con-
trol Statements. Section 3.14’s objects-natural case study demonstrates using the open-
source Boost Multiprecision library’s cpp_int class to create super-sized integers.

Chapter 4, Control Statements: Part 2, presents C++’s other control statements—for,
do…while, switch, break and continue—and the logical operators. A key feature of this
chapter is its structured-programming summary. We introduce C++20’s format func-
tion, which provides powerful new text-formatting capabilities. Pre-C++20 text format-
ting is complex and verbose. The format function greatly simplifies data formatting using
a concise syntax based on the Python programming language’s text formatting. We present
a few C++20 text-formatting features throughout the book, then take a deeper look in
Chapter 19. In introductory computer science courses, instructors may wish to present
Section 19.9 after C++20 text formatting is introduced in Chapter 4. Section 4.14’s
objects-natural case study demonstrates using the open-source Boost Multiprecision
library’s cpp_dec_float_50 class for precise monetary calculations.

Chapter 5, Functions and an Intro to Function Templates, introduces custom functions.
We introduce random-number generation and simulation techniques and use them in our
first of several Random-Number Simulation case studies throughout the book to imple-
ment a popular casino dice game. We discuss C++’s secure library of random-number
capabilities that can produce “nondeterministic” random numbers—a set of random
numbers that can’t be predicted. Such random-number generators are used in simulations
and security scenarios where predictability is undesirable. We also discuss passing infor-
mation between functions and how the function-call stack and stack frames support the
function call/return mechanism. We begin our rich treatment of the powerful computer
science topic of recursion.

Section 5.19’s objects-natural case study title—Pqyoaf X Nylfomigrob Qwbbfmh
Mndogvk: Rboqlrut yua Boklnxhmywex—looks like gibberish. This is not a mistake!
This case study continues our security emphasis by introducing cryptography, which is
critically important in today’s connected world. Every day, cryptography is used behind
the scenes to ensure that your Internet-based communications are private and secure.
You’ll use our implementation of the Vigenère secret-key cipher7 algorithm to encrypt and
decrypt messages and to decrypt this section’s title. Then, in Chapter 9’s objects-natural
case study, you’ll study our class that implements the Vigenère secret-key cipher using
classes and array-processing techniques. In Chapter 9 case study exercises, you’ll also
explore far more secure public-key cryptography with the RSA algorithm.

7. “Vigenère Cipher.” Accessed April 29, 2023. https://en.wikipedia.org/wiki/Vigenère_cipher.

Sec

xxx Preface

Part 2: Arrays, Pointers and Strings

Chapter 6, arrays, vectors, Ranges and Functional-Style Programming, begins our
early coverage of the C++ standard library’s containers, iterators and algorithms. We pres-
ent the C++ standard library’s array container for representing lists and tables of values.
You’ll define and initialize arrays and access their elements. We discuss passing arrays to
functions, sorting and searching arrays and manipulating multidimensional arrays.

Like many modern languages, C++ offers “functional-style” programming features.
These can help you write more concise code that’s less likely to contain errors and is easier
to read, debug and modify. Chapter 6 begins our introduction to functional-style pro-
gramming using arrays, lambda expressions (anonymous functions), and C++20
ranges—a C++20 “big four” feature that simplifies how you call many of the C++ standard
library’s predefined algorithms. We continue that discussion in Chapters 13 and 14.

Section 6.15’s objects-natural case study demonstrates the C++ standard library class
template vector. Chapter 6 is essentially a large objects-natural case study of both arrays
and vectors. The code in this chapter is a good example of Modern C++ coding idioms.
This chapter’s exercises include a case study on the famous Knight’s Tour problem, which
we approach in various ways, including an AI strategy called heuristic programming.

Chapter 7, (Downplaying) Pointers in Modern C++, explains pointer concepts, such as
declaring pointers, initializing pointers, getting the memory address of a variable, dereferenc-
ing pointers, pointer arithmetic and the close relationship among built-in pointers, pointer-
based arrays and pointer-based strings, each of which C++ inherited from the C program-
ming language. Pointers are powerful but challenging to work with. So, we focus on Modern
C++ features that eliminate the need for most pointers and make your code more robust and
secure, including references, “smart pointer” objects, arrays and vectors, strings, C++20
spans and C++17 string_views. We still cover built-in arrays because they remain useful in
C++, and so you’ll be able to read legacy C++ code that you’ll encounter in industry. In new
development, you should favor Modern C++ capabilities. Section 7.10’s objects-natural case
study demonstrates one such capability—C++20 spans. These enable you to view and
manipulate elements of contiguous containers, such as pointer-based arrays and standard
library arrays and vectors, without using pointers directly.

In a Random-Number Simulation case study exercise, you’ll implement the famous
race between the tortoise and the hare. This chapter also contains the first of our two sys-
tems programming case study exercises—Building Your Own Computer (as a virtual
machine). In the context of several case study exercises, you’ll “peel open” a hypothetical
computer and look at its internal structure. We introduce simple machine-language pro-
gramming and write several small machine-language programs for this computer, which
we call the Simpletron. As its name implies, it’s a simple machine, but as you’ll see, a pow-
erful one as well. The Simpletron runs programs written in the only language it directly
understands—that is, Simpletron Machine Language, or SML for short. To make this an
especially valuable experience, you’ll then build a computer (through the technique of
software-based simulation) on which you can actually run your machine-language pro-
grams! The Simpletron experience will give you a basic introduction to virtual
machines—one of the most important systems-architecture concepts in modern com-
puting. Chapter 13 contains the intimately related systems programming case study exer-
cise—Building Your Own Compiler.

Sec

6 Tour of the Book xxxi

Chapter 8, strings, string_views, Text Files, CSV Files and Regex, presents many of the
standard library string class’s features; shows how to write text to and read text from both
plain text files and comma-separated values (CSV) files (popular for representing data science
datasets); and introduces string pattern matching with the standard library’s regular-expres-
sion capabilities. C++ offers two types of strings—string objects and C-style pointer-based
strings. We use string objects to make programs more robust and eliminate many of the
security problems of C strings. In new development, you should favor string objects. We
also present C++17’s string_views—a lightweight, flexible mechanism for passing any type
of string to a function. This chapter presents two objects-natural case studies:

• Section 8.19 introduces data analytics by reading and analyzing a CSV file con-
taining the Titanic Disaster dataset.

• Section 8.20 introduces regular-expression pattern matching and text replace-
ment.

This chapter includes three AI/Data Science case study exercises. In the first case study,
Machine Learning with Simple Linear Regression: Statistics Can Be Deceiving, you’ll
learn that an essential aspect of data analytics is “getting to know your data.” One way to do
this is via descriptive statistics—but these can be deceiving. To illustrate this, we’ll consider
visualizations of Anscombe’s Quartet8 (Exercise 8.40)—a famous example of four dramati-
cally different datasets containing x–y coordinate pairs with nearly identical descriptive sta-
tistics. You’ll then study a completely coded example in which we use the popular AI/
machine-learning statistical technique called simple linear regression that, given a collection
of x–y coordinate pairs representing an independent variable (x) and a dependent variable
(y), determines the equation of a straight line (y = mx + b) that most closely fits the data. This
equation describes the relationship between the dependent and independent variables,
enabling us to predict y’s value for any given x. It also allows us to plot a regression line.
You’ll see that the regression lines for Anscombe’s Quartet are visually identical for all four
dramatically different datasets. The code you’ll study uses the popular open-source gnuplot
package to create attractive visualizations of Anscombe’s Quartet. The gnuplot package uses
its own plotting language, different from C++, so we provide extensive code comments that
explain the gnuplot commands.

In the AI/Data Science case study exercise, Machine Learning with Simple Linear
Regression: Time Series Analysis (Exercise 8.41), you’ll use what you learned in the preced-
ing exercise to analyze a time series, a sequence of values (called observations) associated
with points in time. Time series examples include daily closing stock prices, hourly tem-
perature readings, the changing positions of a plane in flight, annual crop yields and quar-
terly company profits. You’ll run a simple linear regression on 126 years of New York City
average January temperature data (stored in a CSV file) and use gnuplot to plot the data
and the regression line so you can determine if there is a cooling or warming trend.

This chapter’s final AI/Data Science case study (Exercise 8.42) presents an intro to
similarity detection with very basic natural language processing (NLP)—an important
data science and artificial intelligence topic. NLP helps computers understand, analyze and
process text. While writing this book, we used the paid (NLP) tool Grammarly9 to help
tune the writing and ensure the text’s readability for a broad audience. Some people believe

8. “Anscombe’s quartet.” Accessed March 8, 2023. https://en.wikipedia.org/wiki/

Anscombe%27s_quartet.

DS

Sec

DS

DS

DS

DS

xxxii Preface

that the works of William Shakespeare actually might have been penned by Christopher
Marlowe or Sir Francis Bacon, among others.10,11 In this exercise, you’ll use array-, string-
and file-processing techniques to perform simple similarity detection on Shakespeare’s
Romeo and Juliet and Marlowe’s Edward the Second. You’ll determine how alike they are
by comparing the statistics you calculate, such as the percentages of each unique word
among all words in each play. You may be surprised by the results.

Part 3: Object-Oriented Programming

Chapter 9, Custom Classes, begins our substantially upgraded, multi-chapter, Modern
C++, object-oriented programming treatment. C++ is extensible—each class you create
becomes a new type you can use to create objects. In Chapters 9–11, you’ll learn C++’s
features for crafting valuable classes and manipulating objects of these classes.

In Section 9.22, we conclude our objects natural case study track by studying the
Vigenère Secret-Key Cipher class implementation that we demonstrated in Chapter 5’s
objects-natural case study. Objects-natural case study Exercises 9.32–9.33 demonstrate
how to serialize objects with JSON (JavaScript Object Notation)—a popular human-
and-machine-readable data format commonly used to transmit data over the Internet.

In the context of several Random-Number Simulation case study exercises, you’ll use
arrays of strings, random-number generation and simulation techniques to implement
a text-based, card-shuffling-and-dealing program. In a Security and Cryptography case
study exercise, you’ll also explore public-key cryptography with the RSA algorithm. This
technique performs encryption with a public key known to every sender who might want
to send a secret message to a particular receiver. The public key can be used to encrypt mes-
sages but not decrypt them. Messages can be decrypted only with a paired private key
known only to the receiver, so it’s much more secure than secret keys in secret-key cryp-
tography. RSA is among the world’s most widely used public-key cryptography technolo-
gies. You’ll build a working, small-scale, classroom version of the RSA cryptosystem.

Chapter 10, OOP: Inheritance and Runtime Polymorphism, focuses on the relationships
among classes in an inheritance hierarchy and the powerful runtime polymorphic process-
ing capabilities (for “programming in the general”) that these relationships enable. In this
chapter’s runtime-polymorphism case study, you’ll implement an Employee class hierar-
chy in an application that performs polymorphic payroll calculations.

An important aspect of this chapter is understanding how polymorphism works. A
key feature of the chapter is its detailed diagram and explanation of how C++ typically
implements polymorphism, virtual functions and dynamic binding “under the hood.”
You’ll see that it can use an elegant pointer-based data structure. We also discuss program-
ming to an interface, not an implementation. In Chapter 20, we discuss other more
advanced mechanisms for achieving runtime polymorphism, including the non-virtual
interface idiom (NVI) and std::variant/std::visit.

9. Grammarly has free and paid versions (https://www.grammarly.com). They provide free plug-ins
you can use in several popular web browsers.

10. “Did Shakespeare Really Write His Own Plays?” Accessed November 13, 2020. https://www.his-
tory.com/news/did-shakespeare-really-write-his-own-plays.

11. “Shakespeare authorship question.” Accessed November 13, 2020. https://en.wikipedia.org/
wiki/Shakespeare_authorship_question.

SE

Sec

6 Tour of the Book xxxiii

Chapter 11, Operator Overloading, Copy/Move Semantics and Smart Pointers, shows
how to enable C++’s existing operators to work with custom class objects and introduces
smart pointers and dynamic memory management. Smart pointers help you avoid dynamic
memory management errors and “resource leaks” by providing additional functionality
beyond that of built-in pointers. We discuss unique_ptr in this chapter and shared_ptr and
weak_ptr in Chapter 20, Other Topics and a Look Toward the Future of C++.

A key aspect of Chapter 11 is crafting valuable classes. We begin with a string class
test-drive, presenting an elegant use of operator overloading before you implement your
own customized class with overloaded operators. Then, in our Crafting Valuable Classes
case study—one of the book’s most important examples—you’ll build your own custom
MyArray class using overloaded operators and other capabilities to solve various problems
with C++’s native pointer-based arrays.12 We introduce and implement the five special
member functions you can define in each class—the copy constructor, copy assignment
operator, move constructor, move assignment operator and destructor. We discuss copy
semantics and move semantics, which enable a compiler to move resources from one
object to another to avoid costly, unnecessary copies. We introduce C++20’s three-way
comparison operator (<=>; also called the “spaceship operator”) and show how to imple-
ment custom conversion operators. In Chapter 15, you’ll convert a portion of the MyArray
class into a class template that can store elements of a specified type. You will then have
truly “crafted valuable classes.”

Chapter 12, Exceptions and a Look Forward to Contracts, continues our exception-
handling discussion that began in Chapter 6. We’ve enhanced Chapter 12’s coverage with
discussions of when to use exceptions, exception safety guarantees, and using exceptions
in the context of constructors and destructors. We show how to handle dynamic memory
allocation failures. We discuss why some libraries provide dual interfaces, enabling devel-
opers to choose whether to use versions of functions that throw exceptions or versions that
set error codes. The chapter concludes with a case study that introduces contracts—a pos-
sible C++26 feature. One goal of contracts is to make most functions noexcept—mean-
ing they do not throw exceptions—which might enable the compiler to perform
additional optimizations and eliminate the overhead and complexity of exception han-
dling. Another goal is to find errors faster, eliminate them during development and,
hopefully, create more robust code for deployment. We introduce preconditions, post-
conditions and assertions, and we discuss how they can be implemented as contracts that
are tested at execution time. We demonstrate the example code using GCC’s experimental
contracts implementation on https://godbolt.org.

Part 4: Standard Library Containers, Iterators and Algorithms

Chapter 13, Standard Library Containers and Iterators, begins our broader and deeper
treatment of three key C++ standard library components:

• containers (templatized data structures),

• iterators (for traversing containers and accessing their elements) and

• algorithms (which use iterators to manipulate containers).

12. In industrial-strength systems, you’ll use standard library classes for this, but this example enables us
to go “under the hood” to demonstrate many key Modern C++ concepts.

Err

Perf

Err

Perf

xxxiv Preface

We’ll discuss containers, container adaptors and near containers. You’ll see that the C++
standard library provides commonly used data structures, so you do not need to create
your own—the vast majority of your data structures needs can be fulfilled by reusing
these standard library capabilities. We demonstrate most standard library containers and
introduce how iterators enable algorithms to be applied to various container types. We
continue showing how C++20 ranges can simplify your code.

This chapter presents the second of our two systems programming case study exer-
cises—Building Your Own Compiler. In the context of several exercises, you’ll build a
simple compiler that translates programs written in a small high-level programming lan-
guage into our Simpletron Machine Language (SML). You’ll write programs in this small
new high-level language, compile them on the compiler you build, then run them on your
Simpletron virtual machine you built in Chapter 7’s systems programming case study
exercise—Building Your Own Computer. And with Chapter 8’s file-processing tech-
niques, your compiler can write the generated machine-language code into a file from
which your Simpletron computer can then read your SML program, load it into the Sim-
pletron’s memory and execute it! This is a nice end-to-end systems-programming exercise
sequence for novice computing students.

Chapter 14, Standard Library Algorithms and C++20 Ranges & Views, presents many of
the standard library’s 115 algorithms, focusing on the C++20 range-based algorithms,
which are easier to use than their pre-C++20 versions. As you’ll see, range-based algo-
rithms specify their requirements using C++20 concepts—a C++20 “big four” feature that
makes generic programming with templates more convenient and powerful. We briefly
introduce C++20 concepts as needed for you to understand the requirements for working
with these algorithms—Chapter 15 discusses concepts in more depth. Algorithms we pres-
ent include filling containers with values, generating values, comparing elements or entire
containers, removing elements, replacing elements, mathematical operations, searching,
sorting, swapping, copying, merging, set operations, and calculating minimums and maxi-
mums. We discuss each algorithm’s minimum iterator requirements so you can determine
which containers can be used with each algorithm. We also continue our discussion of C++’s
functional-style programming features with C++20 ranges and views.

Part 5: Advanced Topics

Chapter 15, Templates, C++20 Concepts and Metaprogramming, presents our substan-
tially enhanced treatment of compile-time (static) polymorphism, generic programming
with templates, C++20 concepts and template metaprogramming. The importance of
templates has increased with each new C++ release. A major Modern C++ theme is to do
more at compile-time for better type checking and better runtime performance—any-
thing resolved at compile-time avoids runtime overhead and makes systems faster. As
you’ll see, templates and especially template metaprogramming are the keys to powerful
compile-time operations.

We demonstrate C++20’s new template capabilities, including abbreviated function
templates, templated lambdas and concepts. We introduce type traits for testing type attri-
butes at compile-time. We show variadic function templates that receive a variable number
of parameters and use fold expressions to conveniently apply an operation to all the argu-
ments passed to a variadic template.

CConcepts

Perf

CConcepts

6 Tour of the Book xxxv

A feature of this chapter is the Crafting Valuable Classes case study—you’ll reimple-
ment Chapter 11’s MyArray case study as a class template with custom iterators that enable
most C++ standard library algorithms to manipulate MyArray objects. We also define a
custom algorithm that can process MyArray elements and standard library container class
objects. We show that you can use concepts to overload functions based on the type
requirements of their parameters. Finally, we introduce template metaprogramming for
performing compile-time calculations, enabling you to improve a program’s execution-
time performance, possibly reducing both execution time and memory consumption.

Chapter 16, C++20 Modules, presents another of C++20’s “big four” features. Modules
provide a new way to organize your code, precisely control which declarations you expose
to client code and encapsulate implementation details. Modules help you be more produc-
tive, especially when building, maintaining and evolving large software systems. Modules
help such systems build faster and make them more scalable. C++ creator Bjarne Stroustrup
says, “Modules offer a historic opportunity to improve code hygiene and compile times for C++
(bringing C++ into the 21st century).”13 You’ll see that, even in small systems, modules offer
immediate benefits in every program by eliminating the need for the C++ preprocessor. In
several Software Engineering case studies, you’ll learn several ways to separate interface
from implementation using modules.

Chapter 17, Parallel Algorithms and Concurrency: A High-Level View, is the first of two
extensive chapters on concurrency and multi-core programming. Chapter 17 is one of the
most important chapters in the book, presenting C++’s features for building applications
that create and manage multiple tasks. These can significantly improve program perfor-
mance and responsiveness on today’s multi-core processors.

This chapter presents several multithreading and multicore systems performance
case studies. In the Profiling Sequential and Parallel Sorting Algorithms case study, we
show how to use prepackaged parallel algorithms to create multithreaded programs that
will run faster (often much faster) on today’s multi-core computer architectures. For
example, we sort 100 million values using a sequential sort, then a parallel sort. We use
timing operations from C++’s <chrono> library features to profile the performance
improvement we get on today’s popular multi-core systems, as we employ more cores.
You’ll see that the parallel sort runs 6.76 times faster than the sequential sort on our
computer with an 8-core Intel processor.

In the Producer–Consumer: Synchronizing Access to Shared Mutable Data case stud-
ies, we discuss the producer–consumer relationship and demonstrate various ways to imple-
ment it using low-level and high-level C++ concurrency primitives. We also present several
Coordinating Threads case studies using C++20’s new latch, barrier and semaphore capa-
bilities. We emphasize that concurrent programming is difficult to get right, so you should
prefer the easier-to-use, higher-level concurrency features. Lower-level features like sema-
phores and atomics can be used to implement higher-level features like latches.

Chapter 18, C++20 Coroutines, is the second of our chapters on concurrency and multi-
core programming. This chapter presents coroutines—the last of C++20’s “big four” fea-
tures. A coroutine is a function that can suspend its execution and be resumed later,

13. Bjarne Stroustrup, “Modules and Macros.” February 11, 2018. Accessed March 8, 2023. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0955r0.pdf.

Mod

Perf

SE

Perf

xxxvi Preface

enabling you to do concurrent programming with a simple sequential-like coding style.
The mechanisms supporting this are handled entirely by code that’s written for you by the
compiler. A function containing any of the keywords co_await, co_yield or co_return
is a coroutine.

Coroutines require sophisticated infrastructure, which you can write yourself, but
doing so is complex, tedious and error-prone. Instead, most experts agree that you should
use high-level coroutine support libraries, which is the approach we show. The open-
source community has created several experimental libraries for developing coroutines
quickly and conveniently—we use two in our presentation. C++23 has standard library
support for generator coroutines, and more coroutine support is expected in C++26.

We present three multithreading and multicore systems performance case studies:

• Creating a Generator Coroutine with co_yield and the generator Library

• Launching Tasks with concurrencpp

• Creating a Coroutine with co_await and co_return

To help readers understand how coroutines work, the first and third case studies include
diagrams illustrating each application’s flow of control.

Chapter 19, Stream I/O & C++20 Text Formatting, discusses C++ stream input/output
capabilities and formatting features. We include stream formatting primarily for people who
might encounter it in legacy code. Section 19.9 presents an in-depth case study on C++20’s
new text-formatting features. In introductory computer science courses, instructors may
wish to present Section 19.9 after we introduce C++20 text formatting in Chapter 4.

Chapter 20, Other Topics and a Look Toward the Future of C++, continues our discus-
sion of runtime polymorphism from Chapter 10 with case studies on runtime type infor-
mation (RTTI), inheriting base-class constructors, the non-virtual interface idiom, duck
typing with std::variant and std::visit (for runtime polymorphism with objects of
classes that are not related by inheritance), and multiple inheritance. The chapter also pres-
ents miscellaneous C++ topics, including storage classes, storage duration, mutable class
members, namespaces, operator keywords, pointers to class members, the [[nodiscard]]
attribute, the std::shared_ptr and std::weak_ptr smart pointers, determining types at
compile-time with decltype, and the [[likely]] and [[unlikely]] attributes. The chap-
ter ends with a look forward to features coming in the C++23 and C++26 standards.

Chapter 21, Computer Science Thinking: Searching, Sorting and Big O, introduces
some classic computer-science topics. We consider several algorithms and compare their
processor demands and memory consumption. We present a friendly introduction to
computer science’s Big O notation, which indicates how hard an algorithm may have to
work to solve a problem based on the number of items it must process.

The chapter includes two case studies that visualize the high-speed binary search and
merge sort algorithms to illustrate how these algorithms work. In introductory computer
science courses, instructors can present this chapter after Chapter 6.

Modern C++ Data Structures Courses
Our recursion (Chapter 5), arrays (Chapter 6), searching (Chapters 6 and 21), sorting
(Chapters 6 and 21), Big O (Chapter 21), containers (Chapter 13), iterators (Chapter 13)

SE

Perf

Perf

7 Compilers, Docker and Static Code Analysis Tools xxxvii

and algorithms (Chapter 14) coverage provides nice content for a course emphasizing
Modern C++ data structures.

7 Compilers, Docker and Static Code Analysis Tools

Industrial-Strength Compilers
We tested all the code for correctness on the Windows, macOS and Linux operating sys-
tems using the latest versions of

• Visual C++® in Microsoft® Visual Studio® Community edition on Windows®,

• GNU® C++ (g++) and

• Clang C++ (clang++).

See the Before You Begin section that follows this Preface for software installation instruc-
tions.

Most C++20 features are now fully implemented in these compilers. We point out
exceptions as appropriate. As coverage improves, we’ll post code updates to the book’s
GitHub repository:

https://github.com/pdeitel/CPlusPlusHowToProgram11e

and both code and text updates on the book’s website:

https://www.deitel.com/books/cpphtp11

At the time of this writing, Apple’s Xcode integrated development environment (IDE) did
not support various key C++20 features we use. Once these features become available in
Xcode, we’ll post Xcode instructions on the preceding website.

Docker
Docker is a tool for packaging software into containers that bundle everything required to
execute that software conveniently and portably across platforms. Docker provides a sim-
ple way to help you get started with new technologies quickly, conveniently and econom-
ically on your desktop or notebook computers. We show how to install and execute
Docker containers preconfigured with

• the GNU Compiler Collection (GCC), which includes the g++ compiler, and

• the latest version of Clang’s clang++ compiler.

Each can run in Docker on Windows, macOS and Linux, enabling users to try the latest
versions of these compilers. Chapter 1 includes test-drives showing how to compile pro-
grams and run them in the context of cross-platform Docker containers.

Static Code Analysis Tools
Static code analysis tools let you quickly check your code for common errors and security
problems and provide insights for code improvement. Using these tools is like having
world-class experts checking your code. To help us adhere to the C++ Core Guidelines and
improve our code in general, we used the following static-code analyzers:

• clang-tidy—https://clang.llvm.org/extra/clang-tidy/

• cppcheck—https://cppcheck.sourceforge.io/

Err

Sec

xxxviii Preface

• Microsoft’s C++ Core Guidelines static code analysis tools, which are built into
Visual Studio’s static code analyzer

We used these three tools on all the book’s code examples to check for

• adherence to the C++ Core Guidelines,

• adherence to coding standards,

• adherence to modern C++ idioms,

• possible security problems,

• common bugs,

• possible performance issues,

• code readability

• and more.

We also used the compiler flag -Wall in the GNU g++ and LLVM clang++ compilers to
enable all compiler warnings. Most of our programs compile without warning messages.
See the Before You Begin section that follows this Preface for information on configuring
the C++ Core Guidelines checker in Microsoft Visual C++.

8 Thinking Like a Developer—GitHub, StackOverflow
and More
The best way to prepare [to be a programmer] is to write programs, and to study great programs
that other people have written. In my case, I went to the garbage cans at the Computer Science
Center and fished out listings of their operating systems.14—William Gates

You’ll work with such popular websites as GitHub and StackOverflow, and you’ll do lots
of Internet research.

• StackOverflow is one of the most popular programming question-and-answer
sites. Many problems you might encounter have already been discussed here. It’s
a great place to ask code-oriented questions. Many of our Google searches for var-
ious, often complex, issues throughout our writing effort returned StackOverflow
posts as their first results.

• GitHub is an excellent venue for finding free, open-source code to explore and
incorporate into your projects—and for you to contribute your code to the open-
source community if you like. One hundred million developers use GitHub.15

The site hosts over 330 million repositories for code in many programming lan-
guages16—developers made 413 million contributions to repositories in 2022.17

14. William Gates, quoted in Programmers at Work: Interviews With 19 Programmers Who Shaped the
Computer Industry by Susan Lammers. Microsoft Press, 1986, p. 83.

15. “Let’s build from here: The complete developer platform to build, scale, and deliver secure software.”
Accessed March 8, 2023. https://github.com/about.

16. “Let’s build from here: The complete developer platform to build, scale, and deliver secure software.”
Accessed March 8, 2023. https://github.com/about.

17. “OCTOVERSE 2022: The state of open source software.” Accessed March 8, 2023. https://oc-
toverse.github.com.

9 Computing and Data Science Curricula xxxix

GitHub is a crucial element of the professional software developer’s arsenal,
with version-control tools that help developer teams manage public open-source
projects and private projects. There is a massive C++ open-source community on
GitHub where developers contribute to almost 58,00018 C++ code repositories.
We encourage you to study and execute lots of developers’ open-source C++
code. This is a great way to learn and is a natural extension of our live-code teach-
ing approach.19

9 Computing and Data Science Curricula
This book is designed for courses that adhere to one or more of the following ACM/IEEE
CS-and-related curricula, which call for covering security, data science, ethics, privacy and
performance concepts and using real-world data:

• Computer Science Curricula 2013,20

• CC2020: A Vision on Computing Curricula,21

• Computing Curricula 2020 recommendations,22

• Information Technology Curricula 2017,23

• Cybersecurity Curricula 2017,24

• the 2016 data science initiative “Curriculum Guidelines for Undergraduate Pro-
grams in Data Science”25 from the faculty group sponsored by the NSF and the
Institute for Advanced Study, and

• ACM Data Science Task Force’s Computing Competencies for Undergraduate
Data Science Curricula Final Report.26

18. “C++.” Accessed March 8, 2023. https://github.com/topics/cpp.
19. You’ll need to become familiar with the variety of open-source licenses for software on GitHub.
20. ACM/IEEE (Assoc. Comput. Mach./Inst. Electr. Electron. Eng.). 2013. Computer Science Curricula

2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science (New York:
ACM). Accessed March 8, 2023. http://ai.stanford.edu/users/sahami/CS2013/final-

draft/CS2013-final-report.pdf.
21. A. Clear, A. Parrish, G. van der Veer and M. Zhang “CC2020: A Vision on Computing Curricula.”

Accessed March 8, 2023. https://dl.acm.org/citation.cfm?id=3017690.
22. CC2020 Task Force, Computing Curricula 2020. Accessed March 8, 2023. https://www.acm.org/

binaries/content/assets/education/curricula-recommendations/cc2020.pdf.
23. Information Technology Curricula 2017. Accessed March 8, 2023. http://www.acm.org/binaries/

content/assets/education/it2017.pdf.
24. Cybersecurity Curricula 2017. Accessed March 8, 2023. https://cybered.hosting.acm.org/wp-

content/uploads/2018/02/newcover_csec2017.pdf.
25. “Curriculum Guidelines for Undergraduate Programs in Data Science” Accessed March 8, 2023.

http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930.
26. ACM Data Science Task Force, Computing Competencies for Undergraduate Data Science Curricula.

Accessed March 8, 2023. https://dstf.acm.org/DSTF_Final_Report.pdf.

DS

xl Preface

Computing Curricula
• According to “CC2020: A Vision on Computing Curricula,”27 the curriculum

“needs to be reviewed and updated to include the new and emerging areas of
computing such as cybersecurity and data science.”28

10 Data Science Overlaps with Computer Science29

The undergraduate data science curriculum proposal30 includes algorithm development,
programming, computational thinking, data structures, database, mathematics, statistical
thinking, machine learning, data science and more—a significant overlap with computer
science, especially given that the data science courses include some key AI topics. We work
some basic data science topics into various examples, exercises, projects and case studies.

Key Points from the Data Science Curriculum Proposal
This section calls out some key points from the data science undergraduate curriculum
proposal and its detailed course descriptions appendix.31 We cover each of the following:

• Learn programming fundamentals commonly presented in computer science
courses, including working with data structures.

• Be able to solve problems by creating algorithms.

• Work with procedural, functional and object-oriented programming.

• Explore concepts via simulations.

• Use development environments (we tested all our code on Microsft Visual C++,
GNU g++ and LLVM clang++).

• Work with real-world data in practical case studies and projects.

• Create data visualizations.

• Work with existing software.

• Work with high-performance tools, such as C++’s multithreading libraries.

• Focus on data’s ethics, security and privacy issues.

11 Appendices on Deitel.com
On the textbook’s webpage at https://deitel.com/cpphtp11, we provide several appen-
dices to support the book:

27. A. Clear, A. Parrish, G. van der Veer and M. Zhang, “CC2020: A Vision on Computing Curricula,”
https://dl.acm.org/citation.cfm?id=3017690.

28. http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf.
29. This section is intended primarily for data science instructors but includes important information

for computer science instructors as well.
30. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-

views.org/doi/full/10.1146/annurev-statistics-060116-053930.
31. “Appendix—Detailed Courses for a Proposed Data Science Major,” http://www.annualre-

views.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/

st04_de_veaux_supmat.pdf.

DS

12 C++ Core Guidelines xli

• Appendix A, Character Set, contains the letters, digits and symbols of the ASCII
character set.

• Appendix B, Number Systems, overviews the binary, octal, decimal and hexadec-
imal number systems.

• Appendix C, Preprocessor, discusses additional features of the C++ preprocessor.
Template metaprogramming (Chapter 15) and C++20 Modules (Chapter 16)
eliminate the need for many of this appendix’s features.

• Appendix D, Bit Manipulation, discusses bitwise operators for manipulating the
individual bits of integral operands and bit fields for compactly representing inte-
ger data.

Other Web-Based Materials on deitel.com
The book’s webpage also contains:

• Links to our GitHub repository containing the downloadable C++ source code

• Blog posts—https://deitel.com/blog

• Book updates

For more information about downloading the code examples and setting up your C++
development environment, see the Before You Begin section that follows this Preface.

12 C++ Core Guidelines
The C++ Core Guidelines

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

are recommendations “to help people use modern C++ effectively.”32 They’re edited by
Bjarne Stroustrup (C++’s creator) and Herb Sutter (Convener of the ISO C++ Standards
Committee). According to the overview:

“The guidelines are focused on relatively high-level issues, such as interfaces,
resource management, memory management, and concurrency. Such rules affect
application architecture and library design. Following the rules will lead to code
that is statically type safe, has no resource leaks, and catches many more program-
ming logic errors than is common in code today. And it will run fast—you can
afford to do things right.”33

Throughout this book, we adhere to these guidelines as appropriate. You’ll want to pay
close attention to their wisdom. We point out many C++ Core Guidelines recommenda-
tions with a CG icon. There are hundreds of core guidelines divided into scores of catego-
ries and subcategories. Though this might seem overwhelming, the static code analysis
tools we discussed earlier can check your code against the guidelines.

CG

32. C++ Core Guidelines, “Abstract.” Accessed March 8, 2023. https://isocpp.github.io/CppCore-
Guidelines/CppCoreGuidelines#S-abstract.

33. C++ Core Guidelines, “Abstract.”

Err

SE

Perf

CG

xlii Preface

Guidelines Support Library
The C++ Core Guidelines often refer to capabilities of the Guidelines Support Library
(GSL), which provides reusable C++ components that support various recommenda-
tions.34 Microsoft provides an open-source GSL implementation on GitHub at

https://github.com/Microsoft/GSL

For your convenience, we include with the book’s code examples the version of this library
that we used in a few examples. Some GSL features have been incorporated into the C++
standard library.

13 Pedagogic Features and Conventions
C++ How to Program: An Objects-Natural Approach, 11/e contains hundreds of live-code
examples. We stress program clarity and concentrate on building well-engineered software.

Using Fonts for Emphasis
Our C++ code uses a fixed-width font (e.g., x = 5). We place on-screen components in
the bold Helvetica font (e.g., the File menu).

Syntax Coloring
For readability, we syntax color all the code. Our e-book syntax-coloring conventions are:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

Objectives and Outline
Each chapter begins with objectives that tell you what to expect.

Tables and Illustrations
Abundant tables and line drawings are included.

Programming Tips and Key Features
We call out programming tips and key features with icons in the margins (see Section 5).

Index
For convenient reference, we’ve included an extensive index, with defining occurrences of
key terms highlighted with a bold page number.

C++ Programming Fundamentals
In our rich coverage of C++ fundamentals:

• We emphasize problem-solving and algorithm development.

• To help students prepare to work in industry, we use the terminology from the
latest C++ standard document in preference to general programming terms.

34. C++ Core Guidelines, “GSL: Guidelines Support Library.” Accessed March 8, 2023. https://iso-
cpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl.

SE

13 Pedagogic Features and Conventions xliii

• We avoid heavy math, leaving it to upper-level courses. Optional mathematical
exercises and projects are included for science and engineering courses.

Innovation: “Intro-to” Pedagogy with 452 Integrated Checkpoint Exercises
This book uses our new “Intro to” pedagogy with integrated Checkpoint exercises and
answers. We introduced this pedagogy in our textbook, Intro to Python for Computer Sci-
ence and Data Science: Learning to Program with AI, Big Data and the Cloud (https://
deitel.com/pycds). Chapter sections are intentionally small. We use a “read-a-little,
code-a-little, test-a-little” approach. In the core computer science chapters (1–12 and 21),
you read about a new concept, study and execute the corresponding code examples, then
test your understanding via the integrated fill-in-the-blank, true/false, discussion and
code-based Checkpoint exercises immediately followed by their answers. This will help
you keep a brisk learning pace.

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—We strive for simplicity and clarity.

• Keep it small—Many of the book’s examples are small. We use more substantial
code examples, exercises and projects when appropriate, particularly in the case
studies that are a core feature of this textbook.

• Keep it topical—To “take the pulse” of Modern C++, which changes the way
developers write C++ programs, we read, browsed or watched approximately
6,000 current articles, research papers, white papers, books, documentation
pieces, blog posts, forum posts, webinars and videos.

• We show C++ as it’s intended to be used with a rich collection of applications
programming and systems programming case studies, focusing on computer sci-
ence, artificial intelligence, data science and other fields.

Over 700 Contemporary Examples, Exercises and Projects (EEPs)
Consistent with our live-code and object-natural approaches, you’ll learn hands-on from
a broad selection of 255 real-world examples and case studies, and 476 exercises and proj-
ects drawn from computer science, data science and other fields:

• Our code examples, exercises and projects familiarize students with current topics
of interest to developers. We begin in Chapter 1 by briefly touring topics of cur-
rent interest including open-source software, virtualization, simulation, web ser-
vices, multithreading, multicore hardware architecture, systems programming,
artificial intelligence, natural language processing, data science, robust secure
programming, cryptography, Docker, GitHub, StackOverflow, forums, the
metaverse, blockchain, NFTs (nonfungible tokens), cryptocurrencies (like Bit-
coin and Ethereum), generative AI (ChatGPT, Dall-E), general artificial intelli-
gence and more.

• We added a variety of systems programming and application programming case
studies. Some are book sections that walk through the complete source code, some
are exercises with detailed specifications from which you should be able to develop
the code solution on your own, and some are exercises requiring additional
research. We enumerate the 50 case studies and case-study exercises in this preface.

DS

DS

DS

DS

xliv Preface

• You’ll attack exciting and entertaining challenges in our larger case studies, such
as building a casino game, building your own computer (using simulation to
build a virtual machine), using AI/data-science technologies such as basic natural
language processing, building your own compiler, writing multithreaded code to
take advantage of today’s multicore computer architectures to get the best perfor-
mance from your computer and many more.

• Research and project exercises ask you to go deeper into what you’ve learned and
explore other technologies. We encourage you to use computers and the Internet
to solve significant problems. Projects are often more elaborate than the exer-
cises—some might require days or weeks of implementation effort. Many are
appropriate for class projects, term projects, directed-study courses, capstone-
course projects and thesis research. We do not provide solutions for the projects.

• We’ve enhanced existing case studies and added new ones focusing on AI and
data science, including simulations with random-number generation, Ans-
combe’s Quartet, natural language processing (NLP) and artificial intelligence via
heuristic programming.

• Instructors can tailor their courses to their audience’s unique requirements and
vary labs and exam questions each semester.

Extensive Videos
In the Pearson interactive eText and Revel versions of this book, we provide extensive vid-
eos in which Paul Deitel discusses the material in the Before You Begin section and
Chapters 1–10.

Glossary Items
In the Pearson interactive eText and Revel versions of the book, we added over 300 glos-
sary items for the core computer science chapters (1–12 and 21). These are also used in
student learning tools to create flashcards and matching exercises.

Performance
Software developers prefer C++ (and C) for performance-intensive operating systems, real-
time systems, embedded systems, game systems and communications systems, so we focus
on performance issues.

Security Emphasis and Cryptography Case Studies
Consistent with our richer treatment of security, we’ve added case studies on secret-key
and public-key cryptography. The latter is a project exercise that includes a detailed walk-
through of the enormously popular RSA algorithm’s steps, providing hints to help you
build a working, simple, small-scale classroom implementation.

Working with Open-Source Software
Open source is software with source code that anyone can inspect, modify, and
enhance.”35 We encourage you to try lots of demos and view free, open-source code exam-
ples (available on sites such as GitHub) for inspiration.

35. “What is open source?” Accessed March 8, 2023. https://opensource.com/resources/what-
open-source.

DS

Perf

Sec

14 Instructor Supplements xlv

Data Experiences
In Chapter 9, you’ll work with real-world text data. You’ll read and analyze the Titanic
Disaster dataset—popular for introducing data analytics. Datasets are often stored in CSV
(comma-separated values) files, which we introduce in Chapter 9. You’ll also download
and analyze Shakespeare’s play Romeo and Juliet and Christopher Marlowe’s play Edward
the Second from Project Gutenberg—a source of free downloadable texts for analysis. The
site contains over 60,000 e-books in various formats, including plain-text files—these are
out of copyright in the United States.

Privacy
The ACM/IEEE’s curricula recommendations36 for Computer Science, Information
Technology and Cybersecurity mention privacy over 200 times. Every programming stu-
dent and professional needs to be acutely aware of privacy issues and concerns. Students
research privacy in four exercises in Chapters 1 and 3. We also discuss cryptography, which
is critical in maintaining privacy, in Chapters 5 and 10.

In Chapter 1’s exercises, you’ll start thinking about these issues by researching ever-
stricter privacy laws such as HIPAA (Health Insurance Portability and Accountability
Act), the California Consumer Privacy Act (CCPA) in the United States and GDPR (Gen-
eral Data Protection Regulation) for the European Union.

Ethics
The ACM’s curricula recommendations37 for Computer Science, Information Technol-
ogy and Cybersecurity mention ethics more than 100 times. In several Chapter 1 exercises,
you’ll focus on ethics issues via Internet research. You’ll investigate privacy and ethical
issues surrounding intelligent assistants, such as Amazon Alexa, Apple Siri, Google Assis-
tant and Microsoft Cortana. And we’ll look at the excitement and controversy surround-
ing OpenAI’s ChatGPT38 and Dall-E 2.39

14 Instructor Supplements
The following supplements are available only to qualified instructors through Pearson
Education’s Instructor Resource Center (https://pearsonhighered.com/irc):

• The Instructor Solutions Manual contains solutions to most of the end-of-chap-
ter exercises. Solutions are not provided for “project” exercises.

• A Test Item File containing multiple-choice questions and answers.

• Lecture slides containing diagrams, tables and bulleted items summarizing key
points in the text.

36. “Curricula Recommendations.” Accessed March 8, 2023. https://www.acm.org/education/
curricula-recommendations.

37. “Curricula Recommendations.” Accessed March 8, 2023. https://www.acm.org/education/
curricula-recommendations.

38. “Introducing ChatGPT.” Accessed March 8, 2023. https://openai.com/blog/chatgpt.
39. “Dall-E 2.” Accessed March 8, 2023. https://openai.com/product/dall-e-2.

DS

xlvi Preface

The lecture slides do not include the source code—the source-code files40 for the hun-
dreds of live-code examples are available to instructors and students in the book’s GitHub
repository at

https://github.com/pdeitel/CPlusPlusHowToProgram11e

If you’re not a GitHub user, click the green Code button and select Download ZIP to down-
load a ZIP file containing the code. See the Before You Begin section for more information.

Please do not write to us requesting access to the Pearson Instructor’s Resource
Center. Access is restricted to college instructors who have adopted the book for their
courses. Instructors may obtain access only through their Pearson representatives. If
you’re not a registered faculty member, contact your Pearson representative or visit

https://pearson.com/replocator

15 Some Key C++ Documentation and Resources
The book includes almost 800 citations to videos, blog posts, articles, whitepapers and
online documentation we studied while writing the manuscript. You may want to access
some of these resources to investigate more advanced features and idioms. The website
cppreference.com has become the defacto C++ documentation site. We reference it fre-
quently so you can get more details about the standard C++ classes and functions we use
throughout the book. We also frequently cite the final draft of the C++20 standard docu-
ment, which is available free on GitHub at

https://timsong-cpp.github.io/cppwp/n4861/

The C++ standard committee’s evolving working draft (currently C++23) is available at:

https://eel.is/c++draft/

You may also find the following C++ resources helpful as you work through the book.

Documentation
• C++ Reference at https://cppreference.com/

• Microsoft’s C++ language documentation: https://docs.microsoft.com/en-us/
cpp/cpp/

• The GNU C++ Standard Library Reference Manual: https://gcc.gnu.org/
onlinedocs/libstdc++/manual/index.html

16 Getting Your Questions Answered
Popular C++ and general programming online forums include

• https://stackoverflow.com

• https://www.reddit.com/r/cpp/

• https://groups.google.com/g/comp.lang.c++

40. We recommend that instructors present source code in their favorite C++ integrated development
environments (IDEs) or code-oriented text editors. These typically provide customizable syntax
highlighting and adjustable font sizes for presentation purposes.

17 Join the Deitel & Associates, Inc. Social Media Communities xlvii

For a list of other valuable sites, see

https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-
from-these-10-best-websites/

Also, vendors often provide forums for their tools and libraries. Many libraries are man-
aged and maintained at github.com. Some library maintainers provide support through
the Issues tab on a given library’s GitHub page.

Communicating with the Authors
As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

We’ll respond promptly.

17 Join the Deitel & Associates, Inc. Social Media
Communities
You can keep up-to-date with Deitel on the following social media platforms:

• LinkedIn®—https://www.linkedin.com/company/deitel-&-associates/

• YouTube®—https://youtube.com/DeitelTV

• Twitter®—https://twitter.com/deitel

• Facebook®—https://facebook.com/DeitelFan

• Instagram®—https://instagram.com/DeitelFan

18 Live Instructor-Led Training with Paul Deitel
Paul Deitel has been teaching programming languages to academic and professional audi-
ences for three decades. He presents a variety of one- to five-day C++, C, Python and Java
courses, and teaches Python with an Introduction to Data Science for the UCLA Ander-
son School of Management’s Master of Science in Business Analytics (MSBA) program.
The longer classes include intense, hands-on labs. His courses are delivered worldwide on-
site or virtually. Please contact deitel@deitel.com for a proposal customized to meet
your programming-language training needs.

19 College Textbook Digital Formats
Our college textbook, C++ How to Program: An Objects-Natural Approach, 11/e, is avail-
able in three digital formats:

• Online e-books offered through popular e-book providers.

• Interactive Pearson eText (see below).

• Interactive Pearson Revel with assessment (see below).

All of these textbook versions include standard “How to Program” features such as:

• A chapter introducing hardware, software and Internet concepts.

• An introduction to programming for novices.

xlviii Preface

• End-of-section programming and non-programming Checkpoint self-review
exercises with answers.

• End-of-chapter exercises.

Deitel Pearson eTexts and Revels include:

• Videos in which Paul Deitel discusses the material in the book’s core CS1 chap-
ters (1–10).

• Interactive programming and non-programming Checkpoint self-review exer-
cises with answers.

• Glossaries, flashcards, matching exercises and other learning tools.

In addition, Pearson Revels include interactive programming and non-programming
automatically graded exercises, as well as instructor course-management tools, such as a
grade book.

Supplements available to qualified college instructors teaching from the textbook
include:

• Instructor solutions manual with solutions to most of the end-of-chapter exer-
cises.

• Test-item file with four-part, code-based and non-code-based multiple-choice
questions with answers.

• Customizable PowerPoint lecture slides.

Please write to deitel@deitel.com for more information.

20 Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this proj-
ect. We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson. We appreciate the guidance, wisdom, energy and editorial savvy of Tracy John-
son (Pearson Education, Global Content Manager, Computer Science)—on all our aca-
demic publications. She challenges us at every step of the process to “get it right” and make
the best books. Bob Engelhardt managed the book’s production. Erin Sullivan recruited
and managed the academic reviewers; Charvi Arora recruited and managed the profes-
sional reviewers. We selected the cover art, and Chuti Prasertsith designed the cover, add-
ing his special touch of graphics magic.

Reviewers
We were fortunate on this project to have 14 distinguished academics and professionals
review the manuscript. Most of the professional reviewers are either on the ISO C++ Stan-
dards Committee, have served on it or have a working relationship with it. Many have con-
tributed features to the language. They helped us make a better book—any remaining
flaws are our own.

Academic Review Team—Prof. Jeffrey Davis, School of Electrical and Computer
Engineering, Georgia Institute of Technology; M. Michael Hadavi, The MathWorks,
Inc., MET Computer Science at Boston University; Dr. Ningfang Mi, Associate Professor

20 Acknowledgments xlix

of Electrical and Computer Engineering, Northeastern University; Prof. Patrice Roy, Uni-
versité de Sherbrooke, ISO C++ Standards Committee Member.

Professional Review Team—Andreas Fertig, Independent C++ Trainer and Consul-
tant, Creator of cppinsights.io, Author of Programming with C++20; Marc Gregoire,
Software Architect, Nikon Metrology, Microsoft Visual C++ MVP and author of Profes-
sional C++, 5/e; Dr. Daisy Hollman, ISO C++ Standards Committee Member; Danny
Kalev, Ph.D. and Certified System Analyst and Software Engineer, Former ISO C++ Stan-
dards Committee Member; Dietmar Kühl, Senior Software Developer, Bloomberg L.P.,
ISO C++ Standard Committee Member; Inbal Levi, SolarEdge Technologies, ISO C++
Foundation director, ISO C++ SG9 (Ranges) chair, ISO C++ Standards Committee mem-
ber; Arthur O’Dwyer, C++ trainer, Chair of CppCon’s Back to Basics track, author of sev-
eral accepted C++17/20/23 proposals and the book Mastering the C++17 STL; Saar Raz,
Senior Software Engineer, Swimm.io and Implementor of C++20 Concepts in Clang; José
Antonio González Seco, Parliament of Andalusia; Anthony Williams, Member of the Brit-
ish Standards Institution C++ Standards Panel, Director of Just Software Solutions Ltd.,
Author of C++ Concurrency in Action, 2/e (Anthony is the author or co-author of many C++
Standard Committee papers that led to C++’s standardized concurrency features).

Google Search
Thanks to Google, whose search engine answers our constant stream of queries, each in a
fraction of a second, at any time—and at no charge. It’s the single best productivity
enhancement tool we’ve added to our research process in the last 20 years.

Grammarly
We use the paid version of Grammarly on all our manuscripts. They describe their tools
as helping you “compose bold, clear, mistake-free writing” with their “AI-powered writing
assistant.”41 Grammarly also provides free tools that you can integrate into several popular
web browsers, Microsoft® Office 365™ and Google Docs™.

As you read the book and work through the code examples, we’d appreciate your com-
ments, criticisms, corrections and suggestions for improvement. Please send all correspon-
dence, including questions, to

deitel@deitel.com

We’ll respond promptly.
Welcome to the exciting world of C++ programming. We’ve enjoyed writing 11 edi-

tions of our academic and professional C++ content over the last 30 years. We hope you
have an informative, challenging and entertaining learning experience with C++ How to
Program: An Objects-Natural Approach, 11/e and enjoy this look at Modern C++ soft-
ware development.

Paul Deitel
Harvey Deitel

41. “Grammarly.” Accessed March 8, 2023. https://www.grammarly.com.

l Preface

21 About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an MIT
graduate with 43 years in computing. He is one of the world’s most experienced
programming-languages trainers, having taught professional courses to software develop-
ers since 1992. He has delivered hundreds of programming courses to academic, industry,
government and military clients of Deitel & Associates, Inc. internationally, including
UCLA, SLB (formerly Schlumberger), Cisco, IBM, Siemens, Sun Microsystems (now
Oracle), Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm
Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, Puma, iRobot
and many more.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 62 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in
Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University—
he studied computing in each of these programs before they spun off Computer Science
departments. He has extensive college and professional teaching experience, including
earning tenure and serving as the Chairman of the Computer Science Department at Bos-
ton College before founding Deitel & Associates in 1991 with his son, Paul. The Deitels’
publications have earned international recognition, with more than 100 translations pub-
lished in Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese,
Traditional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has deliv-
ered hundreds of programming courses to academic, corporate, government and military
clients.

22 About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate-training organization specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include some of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered virtually and live at client sites
worldwide, and virtually worldwide for Pearson Education on O’Reilly Online Learning
(https://learning.oreilly.com), formerly called Safari Books Online.

Through its 48-year publishing partnership with Pearson, Deitel & Associates, Inc.
publishes leading-edge computer programming college textbooks and professional books
in print and digital formats, LiveLessons video courses, O’Reilly Online Learning live
training courses and Revel™ and eText interactive multimedia college courses.

To contact Deitel & Associates, Inc. and the authors, or to request a proposal for vir-
tual or on-site, instructor-led training worldwide, write to

deitel@deitel.com

To learn more about Deitel virtual and on-site corporate training, visit

https://deitel.com/training

Individuals wishing to purchase Deitel books can do so at

https://amazon.com
https://www.barnesandnoble.com/

22 About Deitel® & Associates, Inc. li

Bulk orders by corporations, the government, the military and academic institutions
should be placed directly with Pearson. For corporate and government sales, send an email
to

corpsales@pearsoned.com

Deitel e-books are available in various formats from

https://www.amazon.com/ https://www.vitalsource.com/

https://www.barnesandnoble.com/ https://www.redshelf.com/

https://www.informit.com/ https://www.chegg.com/

To register for a free 10-day trial to O’Reilly Online Learning, visit

https://learning.oreilly.com/register/

